Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
% The following properties are measured at room temperature and are tensile
% in a single direction. Some materials, such as metals are generally
% isotropic, whereas others, like composite are highly anisotropic
% (different properties in different directions). Also, property values can
% range depending on the material grade. Finally, thermal or environmental
% changes can alter these properties, sometimes drastically.
|
2 | Pass |
S_y = 250e6; %Pa
S_u = 400e6; %Pa
e_y = 0.00125;
e_u = 0.35;
nu = 0.26;
G = 79.3e9; %Pa
E = 200e9; %Pa
density = 7.85; %g/cm^3
sh_exp = 0.14; %strain-hardening exponent
sh_coeff = 0.463; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
R =
156250
|
3 | Pass |
S_y = 830e6; %Pa
S_u = 900e6; %Pa
e_y = 0.00728;
e_u = 0.14;
nu = 0.342;
G = 44e9; %Pa
E = 114e9; %Pa
density = 4.51; %g/cm^3
sh_exp = 0.04; %strain-hardening exponent
sh_coeff = 0.974; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2)
R =
3021200
|
4 | Pass |
S_y = 1172e6; %Pa
S_u = 1407e6; %Pa
e_y = 0.00563;
e_u = 0.027;
nu = 0.29;
G = 11.6e9; %Pa
E = 208e9; %Pa
density = 8.19; %g/cm^3
sh_exp = 0.075; %strain-hardening exponent
sh_coeff = 1.845; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
R =
3.2992e+06
|
5 | Pass |
S_y = 241e6; %Pa
S_u = 300e6; %Pa
e_y = 0.0035;
e_u = 0.15;
nu = 0.33;
G = 26e9; %Pa
E = 68.9e9; %Pa
density = 2.7; %g/cm^3
sh_exp = 0.042; %strain-hardening exponent
sh_coeff = 0.325; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2)
R =
421750
|
6 | Pass |
S_y = 70e6; %Pa
S_u = 220e6; %Pa
e_y = 0.00054;
e_u = 0.48;
nu = 0.34;
G = 48e9; %Pa
E = 130e9; %Pa
density = 8.92; %g/cm^3
sh_exp = 0.44; %strain-hardening exponent
sh_coeff = 0.304; %strain-hardening coefficient 530MPa
assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2)
R =
18900
|
7 | Pass |
S_y = 317e6; %Pa
S_u = 1130e6; %Pa
e_y = 0.000685;
e_u = 0.24;
nu = 0.3;
G = 178e9; %Pa
E = 463e9; %Pa
density = 21.02; %g/cm^3
sh_exp = 0.353; %strain-hardening exponent
sh_coeff = 1.870; %strain-hardening coefficient
assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2)
R =
1.0857e+05
|
8 | Pass |
S_y = 82e6; %Pa
S_u = 82e6; %Pa
e_y = 0.0265;
e_u = 0.45;
nu = 0.41;
G = 2.8e9; %Pa
E = 3.5e-2; %Pa
density = 1.14; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2)
R =
1086500
|
9 | Pass |
S_y = 230e6; %Pa
S_u = 230e6; %Pa
e_y = 0.016;
e_u = 0.016;
nu = 0.35;
G = 13.0e9; %Pa
E = 14.5e9; %Pa
density = 1.51; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
R =
1840000
|
10 | Pass |
S_y = 1200e6; %Pa
S_u = 1200e6; %Pa
e_y = 0.001;
e_u = 0.001;
nu = 0.20;
G = 478e9; %Pa
E = 1200e9; %Pa
density = 3.51; %g/cm^3
assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2)
R =
600000
|
11 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 250e6; %Pa
e_y = 0.00125;
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
case 2
S_y = 82e6; %Pa
e_y = 0.0265;
assert(abs(stress_strain2(S_y,e_y)-1.0865e6)/1.0865e6<5e-2)
case 3
S_y = 241e6; %Pa
e_y = 0.0035;
assert(abs(stress_strain2(S_y,e_y)-4.2175e5)/4.2175e5<5e-2)
case 4
S_y = 1172e6; %Pa
e_y = 0.00563;
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
end
R =
421750
|
12 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 1200e6; %Pa
e_y = 0.001;
assert(abs(stress_strain2(S_y,e_y)-6e5)/6e5<5e-2)
case 2
S_y = 1172e6; %Pa
e_y = 0.00563;
assert(abs(stress_strain2(S_y,e_y)-3.29918e6)/3.29918e6<5e-2)
case 3
S_y = 230e6; %Pa
e_y = 0.016;
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
case 4
S_y = 250e6; %Pa
e_y = 0.00125;
assert(abs(stress_strain2(S_y,e_y)-1.5625e5)/1.5625e5<5e-2)
end
R =
1840000
|
13 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 830e6; %Pa
e_y = 0.00728;
assert(abs(stress_strain2(S_y,e_y)-3.0212e6)/3.0212e6<5e-2)
case 2
S_y = 230e6; %Pa
e_y = 0.016;
assert(abs(stress_strain2(S_y,e_y)-1.84e6)/1.84e6<5e-2)
case 3
S_y = 70e6; %Pa
e_y = 0.00054;
assert(abs(stress_strain2(S_y,e_y)-1.89e4)/1.89e4<5e-2)
case 4
S_y = 317e6; %Pa
e_y = 0.000685;
assert(abs(stress_strain2(S_y,e_y)-1.085725e5)/1.085725e5<5e-2)
end
R =
18900
|
3238 Solvers
272 Solvers
Multiples of a Number in a Given Range
214 Solvers
272 Solvers
Check that number is whole number
1070 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!