The test suite should also verify that the red dot has been placed correctly. In fact, even if the abscissa of the point in question is taken wrong, the wrong code is accepted as a solution.
Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
clf;
t = linspace(0,15,400);
y = exp(-0.5*t).*cos(2*pi.*t);
m = plot_cos(y, t);
assert(abs(m - (-0.781239288889930)) <= 1e-4)
h = findobj(gcf, 'Type', 'Line');
if length(h) == 2
assert(isequal([h.Color], [1 0 0 0 0 1]), 'Check plot colors')
assert(strcmp([h.LineStyle], 'none--'), 'Check the line style')
assert(strcmp([h.Marker],'*none'), 'Check marker type')
assert(isequal([h.YData],[m, y]), 'Check plotted data')
elseif length(h) == 1
assert(isequal([h.Color], [0 0 1]),'Check plot colors')
assert(strcmp([h.LineStyle], '--'), 'Check the line style')
assert(strcmp([h.Marker],'*'),'Check marker type')
assert(isequal([h.YData],y),'Check plotted data' )
assert(isequal([h.MarkerEdgeColor], [1 0 0]),'Check plot colors')
assert(isequal([h.MarkerIndices], 14),'Check marker location')
elseif length(h)>2
error('There may be too many plots on the figure.')
else
error('No plot found.')
end
|
2 | Pass |
clf;
t = linspace(2,5,100);
y = exp(-0.5*t).*cos(2*pi.*t);
m = plot_cos(y, t);
assert(abs(m - (-0.287376348726584)) <= 1e-4)
h = findobj(gcf, 'Type', 'Line');
if length(h) == 2
assert(isequal([h.Color], [1 0 0 0 0 1]), 'Check plot colors')
assert(strcmp([h.LineStyle], 'none--'), 'Check the line style')
assert(strcmp([h.Marker],'*none'), 'Check marker type')
assert(isequal([h.YData],[m, y]), 'Check plotted data')
elseif length(h) == 1
assert(isequal([h.Color], [0 0 1]),'Check plot colors')
assert(strcmp([h.LineStyle], '--'), 'Check the line style')
assert(strcmp([h.Marker],'*'),'Check marker type')
assert(isequal([h.YData],y),'Check plotted data' )
assert(isequal([h.MarkerEdgeColor], [1 0 0]),'Check plot colors')
assert(isequal([h.MarkerIndices],17 ),'Check marker location')
elseif length(h)>2
error('There may be too many plots on the figure.')
else
error('No plot found.')
end
|
894 Solvers
Project Euler: Problem 3, Largest prime factor
379 Solvers
424 Solvers
992 Solvers
307 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!