Cody

# Problem 44819. Relative pose in 2D: problem 1

Solution 1964136

Submitted on 7 Oct 2019 by Gunther S
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
T = user_function assert(all(size(T)==3), 'The matrix must be 3x3'); assert(isreal(T), 'The matrix must be real, not complex');

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000

2   Pass
T = user_function assert(isequal(T(3,:), [0 0 1]), 'The bottom row of the homogeneous transformation matrix is not correct')

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000

3   Pass
T = user_function assert(isequal(T(1,3),123), 'The representation of the x-coordinate is not correct')

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000

4   Pass
T = user_function assert(isequal(T(2,3),-74.6), 'The representation of the y-coordinate is not correct')

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000

5   Pass
T = user_function R = T(1:2,1:2); assert( abs(det(R)-1) < 0.01, 'The determinant of the rotation submatrix is not correct')

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000

6   Pass
T = user_function R = T(1:2,1:2); assert( abs(atan2d(R(2,1), R(1,1)) + 112.5) < 0.1, 'The rotation matrix is not correct, check your calculation of the heading SSW and whether you are using radians or degrees')

a = -1.9635 ca = -0.3827 sa = -0.9239 ans = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000 T = -0.3827 0.9239 123.0000 -0.9239 -0.3827 -74.6000 0 0 1.0000