This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.
Why does the test suite shows true results for numbers that are not prime, i.e. the sum of digits of the given number is not prime?
Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
x = 5;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
5
n =
5
|
2 | Pass |
x = 1;
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
1
n =
1
|
3 | Fail |
x = 2^randi(16);
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
3
a =
3 2
n =
5
|
4 | Pass |
x = 17;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
1
a =
1 7
n =
8
|
5 | Pass |
x = 18;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
1
a =
1 8
n =
9
|
6 | Pass |
x = 61;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
6
a =
6 1
n =
7
|
7 | Pass |
x = 6;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
6
n =
6
|
8 | Pass |
x = 2115;
y_correct = false;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 1
a =
2 1 1 5
n =
9
|
9 | Pass |
x = 2114;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 1
a =
2 1 1 4
n =
8
|
10 | Pass |
x = 2017;
y_correct = true;
assert(isequal(isPernicious(x),y_correct))
a =
2
a =
2 1
a =
2 1 7
n =
10
|
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!