Exporting a code from Maple to Matlab
31 ビュー (過去 30 日間)
古いコメントを表示
I use Matlab for numerical calculations.
But I use Maple for symbolic calculations and after the calculations I usually get piecewise functions in my maple codes.
I think the 3d plots in Matlab is very attractive more than Maple plots. So, I want to export piecewise functions in maple to a Matlab code in order to utilize advantages of plots of Matlab.
MAPLE CODE
restart:
u:=1/(1. + exp(x))^2 + 1/(1. + exp(-5.*t))^2 - 0.2500000000 + x*(1/(1. + exp(1 - 5*t))^2 - 1./((1. + exp(-5*t))^2) + 0.1776705118 + 0.0415431679756514*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + 0.00922094377856479*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + 0.0603742508215732*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) - 0.00399645630498528*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.)) + (-0.00243051684581302*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000809061198761621*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0152377552205917*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00195593427342862*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 1.732050808, 0.) + (-0.000433590063316381*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000146112803263678*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.00319022339097685*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.000477063086307787*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0. <= t and t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) + (-0.00276114805649180*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) - 0.000933166016624500*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) - 0.0207984584912892*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) - 0.00314360556336114*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 1.732050808, 0.) + (0.000172746997599710*piecewise(0. <= x and x <= 0.5000000000, 1.732050808, 0.) + 0.0000586775450031145*piecewise(0. <= x and x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) + 0.00136190009033518*piecewise(0.5000000000 <= x and x <= 1., 1.732050808, 0.) + 0.000211410172315387*piecewise(0.5000000000 <= x and x <= 1., 30.98386677*x - 23.23790008, 0.))*piecewise(0.5000000000 <= t and t <= 1., 30.98386677*t - 23.23790008, 0.):
>
plot3d( u,
x=0..1,
t=0..1,
style=surface,
axes=boxed,
colorscheme=[yellow, red]
);
We can transform a maple code to Matlab code by using
with(CodeGeneration):
Matlab(u,resultname="w");
. But The code can' t properly transform to Matlab code.
Could you help me pls
2 件のコメント
Rik
2020 年 10 月 16 日
Is your question how to implement this code in Matlab, or how to successfully convert the code in Maple? As it stands now your question seems better suited to a Maple forum.
採用された回答
Walter Roberson
2020 年 10 月 16 日
Optimized version of the calculation:
t1 = exp(x);
t21 = -5 .* t;
t3 = exp(t21);
t5 = exp((1 + t21));
t4 = ((0 <= t & t <= 1/2) .* 1.73205);
t5 = ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597));
t6 = ((1/2 <= t & t <= 1) .* 1.73205);
t7 = ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
t6 = (1 + t5).^2;
t2 = 1 ./ t6;
t7 = (1 + t3).^2;
t3 = 1 ./ t7;
t8 = -0.00399646;
t9 = 0.00922094;
t10 = 0.0415432;
t11 = 0.0603743;
t12 = 0.177671;
t13 = ((0 <= x & x <= 1/2) .* 1.73205);
t14 = ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597));
t15 = ((1/2 <= x & x <= 1) .* 1.73205);
t16 = ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379));
t8 = (1 + t1).^2;
t1 = 1 ./ t8;
u1 = -1/4 + (-0.00243052 .* t13 - 0.000809061 .* t14 - 0.00195593 .* t16 - 0.0152378 .* t15) .* t4 + (-0.00043359 .* t13 - 0.000146113 .* t14 - 0.000477063 .* t16 - 0.00319022 .* t15) .* t5 + (-0.00276115 .* t13 - 0.000933166 .* t14 - 0.00314361 .* t16 - 0.0207985 .* t15) .* t6 + t7 .* (0.000172747 .* t13 + 0.0013619 .* t15 + 0.00021141 .* t16 + 5.86775e-05 .* t14) + x .* (t10 .* t4 + t11 .* t6 + t5 .* t9 + t7 .* t8 + t12 + t2 - t3) + t3 + t1;
Unoptimized version of the calculation.
u1 = 1 ./ (1 + exp(x)).^2 + 1 ./ (1 + exp(-(5 .* t))).^2 - 1/4 + x .* (1 ./ (1 + exp((1 - 5 .* t))).^2 - 1 ./ (1 + exp(-(5 .* t))).^2 + 0.177671 + 0.0415432 .* ((0 <= t & t <= 1/2) .* 1.73205) + 0.00922094 .* ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597)) + 0.0603743 .* ((1/2 <= t & t <= 1) .* 1.73205) - 0.00399646 .* ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379))) + (-0.00243052 .* ((0 <= x & x <= 1/2) .* 1.73205) - 0.000809061 .* ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597)) - 0.0152378 .* ((1/2 <= x & x <= 1) .* 1.73205) - 0.00195593 .* ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379))) .* ((0 <= t & t <= 1/2) .* 1.73205) + (-0.00043359 .* ((0 <= x & x <= 1/2) .* 1.73205) - 0.000146113 .* ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597)) - 0.00319022 .* ((1/2 <= x & x <= 1) .* 1.73205) - 0.000477063 .* ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379))) .* ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597)) + (-0.00276115 .* ((0 <= x & x <= 1/2) .* 1.73205) - 0.000933166 .* ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597)) - 0.0207985 .* ((1/2 <= x & x <= 1) .* 1.73205) - 0.00314361 .* ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379))) .* ((1/2 <= t & t <= 1) .* 1.73205) + (0.000172747 .* ((0 <= x & x <= 1/2) .* 1.73205) + 5.86775e-05 .* ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597)) + 0.0013619 .* ((1/2 <= x & x <= 1) .* 1.73205) + 0.00021141 .* ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379))) .* ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
Before this you would do the kind of meshgrid() bit that KSSV indicated, and you could surf() the way he did as well.
6 件のコメント
Walter Roberson
2020 年 12 月 2 日
Unfortunately I recently had a disk crash that affected the drive I was using and the automatic backups of it. I had copied files from it not long before that, but a bunch of the copied files are empty, and I fear that my entire progress on this topic might have vanished.
その他の回答 (2 件)
KSSV
2020 年 10 月 16 日
Some thing like this:
x = linspace(0,1) ;
t = linspace(0,1) ;
[x,t] = meshgrid(x,t) ;
u =1./(1. + exp(x)).^2 + 1./(1. + exp(-5.*t)).^2 - 0.2500000000 + x.*(1./(1. + exp(1 - 5*t)).^2 - 1./((1. + exp(-5*t)).^2) .......
+ 0.1776705118 + 0.0415431679756514*piecewise(0. <= t && t <= 0.5000000000, 1.732050808, 0.) .......
+ 0.00922094377856479*piecewise(0. <= t && t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) .........
+ 0.0603742508215732*piecewise(0.5000000000 <= t && t <= 1., 1.732050808, 0.) ..........
- 0.00399645630498528*piecewise(0.5000000000 <= t && t <= 1., 30.98386677*t ........
- 23.23790008, 0.)) + (-0.00243051684581302*piecewise(0. <= x && x <= 0.5000000000, 1.732050808, 0.).........
- 0.000809061198761621*piecewise(0. <= x && x <= 0.5000000000, 30.98386677*.x .........
- 7.745966692, 0.) - 0.0152377552205917*piecewise(0.5000000000 <= x && x <= 1., 1.732050808, 0.) ........
- 0.00195593427342862*piecewise(0.5000000000 <= x && x <= 1., 30.98386677*x - 23.23790008, 0.)).*piecewise(0. <= t && t <= 0.5000000000, 1.732050808, 0.) ........
+ (-0.000433590063316381*piecewise(0. <= x && x <= 0.5000000000, 1.732050808, 0.) .........
- 0.000146112803263678*piecewise(0. <= x && x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) .........
- 0.00319022339097685*piecewise(0.5000000000 <= x && x <= 1., 1.732050808, 0.) ...........
- 0.000477063086307787*piecewise(0.5000000000 <= x && x <= 1., 30.98386677*x - 23.23790008, 0.)).*piecewise(0. <= t && t <= 0.5000000000, 30.98386677*t - 7.745966692, 0.) .........
+ (-0.00276114805649180*piecewise(0. <= x && x <= 0.5000000000, 1.732050808, 0.) .......
- 0.000933166016624500*piecewise(0. <= x && x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.)...............
- 0.0207984584912892*piecewise(0.5000000000 <= x && x <= 1., 1.732050808, 0.) .............
- 0.00314360556336114*piecewise(0.5000000000 <= x && x <= 1., 30.98386677*x - 23.23790008, 0.)).*piecewise(0.5000000000 <= t && t <= 1., 1.732050808, 0.) ..............
+ (0.000172746997599710*piecewise(0. <= x && x <= 0.5000000000, 1.732050808, 0.) + 0.0000586775450031145*piecewise(0. <= x && x <= 0.5000000000, 30.98386677*x - 7.745966692, 0.) .............
+ 0.00136190009033518*piecewise(0.5000000000 <= x && x <= 1., 1.732050808, 0.) .......
+ 0.000211410172315387*piecewise(0.5000000000 <= x && x <= 1., 30.98386677*x - 23.23790008, 0.)).*piecewise(0.5000000000 <= t && t <= 1., 30.98386677*t - 23.23790008, 0.) ;
surf(x,t,u)
shading interp
colorbar
If error throws, may be you have to use element by element multiplication .*.
or use element by element divison, ./
Replace and with &&
Or Repalce all && with &.
3 件のコメント
Walter Roberson
2024 年 10 月 6 日
function result = piecewise(condition, truevalue, falsevalue)
if numel(truevalue) == 1
result = repmat(truevalue, size(condition))
else
result = truevalue;
end
if numel(falsevalue) == 1
result(~condition) = falsevalue;
else
result(~condition) = falsevalue(~condition);
end
end
or something similar that accounts for the possibility that the true or false conditions might be expressed as scalars.
There is the possibility that the condition might be a scalar but the truevalue or falsevalue might be non-scalar. In such a case, the result of the piecewise() should be the entire non-scalar truevalue or falsevalue; the above code does not work properly for this case.
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!