# Fitting Curve With an Inverse Which Fits a Polynomial

90 ビュー (過去 30 日間)
Ephraim Bryski 2020 年 10 月 5 日
コメント済み: Ameer Hamza 2020 年 10 月 5 日
Hi. I have 8 data points with x and y values. I would like to input new y values and interpolate x values.
I am able to input new x values and interpolate y values. I can fit the points with a sixth order polynomial for y vs. x which is valid in the range. However, I cannot fit a polynomial for x vs. y
One approach is to solve the polynomial for each y value; however, I have thousands of y values I want to interpolate for, so it would be extremely computationally intensive.
Does anyone know a faster approach? Thanks! サインインしてコメントする。

### 採用された回答

Ameer Hamza 2020 年 10 月 5 日

The inverse of a polynomial is not a polynomial, so you cannot simply interpolate the inverse function. Following shows two approaches
1) fzero()
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
y_pred = @(x) polyval(pf, x);
% find x, when y = 100;
y_val = 100;
x_val = fzero(@(x) y_pred(x)-y_val, rand);
2) Polynomial root finding. This method gives all possible solutions
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
% find x, when y = 100;
y_val = 100;
pf(end) = pf(end)-y_val;
x_vals = roots(pf);
x_vals = x_vals(imag(x_vals)==0); % if you only want real roots.
##### 2 件のコメント表示非表示 1 件の古いコメント
Ameer Hamza 2020 年 10 月 5 日
I am glad to be of help!
Yes, symbolic mathematics is much slower as compared to numerical equivalent.

サインインしてコメントする。

R2020b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!