Does anyone know how to calculate the slope of elliptical line by using the matlab?

1 回表示 (過去 30 日間)
I have some data of the elliptical line, does anyone know how to calculate the slope of elliptical line by using the matlab?
  4 件のコメント
James Tursa
James Tursa 2020 年 7 月 9 日
If you mean the slope of the tangent line at a point on the ellipse, take the differential of both sides:
2*x*dx/4 + 2*y*dy/16 = 0
Then solve for dy/dx, the slope of the tangent line at the point (x,y):
dy/dx = -4*x/y
John D'Errico
John D'Errico 2020 年 7 月 9 日
Or, given that equation, differentiate, recognizing that d/dx applied to x^2 is 2*x. d/dx applied to y^2 is 2*y*dy/dx. Now solve for dy/dx.

サインインしてコメントする。

採用された回答

Image Analyst
Image Analyst 2020 年 7 月 8 日
Exactly what is an "elliptical line"? That's a new one on me. I know lines, and I know ellipses, but not an elliptical line. What is it?
Anyway, if you have "some data" on a line, you can get the slope of a line fitted through your "some data" from the polyfit() function.
coefficients = polyfit(x, y, 1);
The slope of the line fitted through the x and y points is
slope = coefficients(1);
  5 件のコメント
Image Analyst
Image Analyst 2020 年 7 月 9 日
編集済み: Image Analyst 2020 年 7 月 9 日
No, because I didn't know what you meant. So you have an ellipse and you want the slope of a line that's tangent to the ellipse at each points. What I'd probably do is Use John and James code. Untested code
slopeInfo = zeros(length(x), 3); % Col1 = x, col2 = y, col3 = slope
for k = 1 : length(x) % for every (x,y) point on the ellipse (almost)...
slopeInfo(k, 1) = x(k); % Assign x to column 1.
slopeInfo(k, 2) = y(k); % Assign y to column 2.
slopeInfo(k, 3) = -4 * x(k) / y(k); % Assign slope to column 3.
end
huazai2020
huazai2020 2020 年 7 月 12 日
But how can I import the data to x(k)?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDebugging and Analysis についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by