How to use function toi with GHz frequency?
5 ビュー (過去 30 日間)
古いコメントを表示
Raúl Parada Medina
2020 年 2 月 16 日
回答済み: David Goodmanson
2020 年 2 月 17 日
Hi all,
I would like to use the function toi https://es.mathworks.com/help/signal/ref/toi.html to generate a plot showing the third-order distortion products from two GHz frequencies 3.6 and 3.7 GHz, however, it shows wrong the central frequencies:
this is the code:
rng default
x = sin(2*pi*3600000000/32*(1:640))+cos(2*pi*3700000000/32*(1:640));
q = x + 0.01*x.^3 + 1e-2*randn(size(x));
toi(q,32)
0 件のコメント
採用された回答
David Goodmanson
2020 年 2 月 17 日
Hi Raul
The problem is that you have 32 Hz as a sampling frequency. I assume here that you meant 32GHz. If you look at the time domain plot in fig 1 below, (time axis is not to scale, just shows the general behavior) you get nothing meaningful. That of course carries over to the toi. Figs 3 and 4 show what happens with a 32 GHz sampling frequency. As shown in fig 3, you need to have an adequate number of time points so that the two waves have enough time to beat against each other several times. That allows toi to find good amplitudes for the two intermodulation frequencies, 2f1-f2 and 2f2-f1. The number of time points was upped to 2000.
x = sin(2*pi*3.6e9/32*(1:640))+cos(2*pi*3.7e9/32*(1:640));
figure(1)
plot(x)
grid on
q = x + 0.01*x.^3 + 1e-5*randn(size(x));
figure(2)
toi(q,32)
x = sin(2*pi*3.6e9/32e9*(1:2000))+cos(2*pi*3.7e9/32e9*(1:2000));
figure(3)
plot(x)
grid on
q = x + 0.01*x.^3 + 1e-5*randn(size(x));
figure(4)
toi(q,32e9)
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Spectral Measurements についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!