Delay differential equation of glucose insulin model

6 ビュー (過去 30 日間)
Mangesh KAle
Mangesh KAle 2019 年 10 月 21 日
コメント済み: Rena Berman 2019 年 12 月 12 日
%% Minimal Glucose dde model
% Name: Aniruddha
% Date: 16.10.2019
% delay differential equation:
% DDE1
% dG(t)/dt= Gin-f2(G(t))-f3(G(t))f4(I(t))+f5(I(t-T2))
% d(I)/dt=f1(G(t))-I(t)/t1
% DDE2
%dG(t)/dt= Gin-f2(G(t))-f3(G(t))f4(I(t))+f5(I(t-T2))
% d(I(t))/dt= Qf1(G(t))-I(t)/t1 +(1-Q)f1(G(t-T1)
%f1(G)=209/(1+e^(-G/300V3 +6.6)
%f2(G)=72(1-e^(-G/144V3))
%f3(G)=0.01G/V3
%f4(I)=[90/(1+e^(-1.772log(I/V1) + 7.76))] +4
%f5(I)=180/(1+e^(0.29I/V1 -7.5))
%Mapping: G(t)=y(1), I(t)=y(2) I1(t)=y(3)
%% clean up:
clc;clear all;
%% parameter values:
p.V1=3;
p.Gin=216
p.Q=0.5;
p.t1=6;
p.V3=10;
p.T2=50;
p.Eg=180;
p.T1=5;
lags=[p.T1 p.T2];
tf=5;
sol=dde23(@ddemodel,lags,[0,tf]);
t=linspace(0,tf,100);
y=ddeval(sol,t);
figure;
plot(t,y)
function dX=ddemodel(t,y,p)
G=y(1);
I=y(2);
I1=y(3);
f1=@(G) 209/(1+e^(-G/300*p.V3 +6.6));
f2=@(G) 72*(1-e^(-G/144*p.V3));
f3=@(G) 0.01*G/p.V3;
f4=@(I) [90/(1+e^(-1.772*log(I/p.V1) + 7.76))] +4;
f5=@(I) 180/(1+e^(0.29*I/p.V1 -7.5));
dG(t)/dt= p.Gin-f2(G)-f3(G)*f4(I)+f5(I(t-p.T2));
d(I)/dt=f1(G)-I(t)/p.t1;
d(I1(t))/dt= p.Q*f1(G)-I(t)/p.t1 +(1-p.Q)*f1(G(t-T1))
df=[dG dI dI1]';
end
  1 件のコメント
Rena Berman
Rena Berman 2019 年 12 月 12 日
(Answers Dev) Restored edit

サインインしてコメントする。

回答 (1 件)

Stephan
Stephan 2019 年 10 月 27 日
Another try, after reading a little bit about dde's:
[t,y] = delayed;
% plot results
subplot(3,1,1)
plot(t,y(1,:),'LineWidth',2)
title('G(t)')
subplot(3,1,2)
plot(t,y(2,:),'LineWidth',2)
title('I(t)')
subplot(3,1,3)
plot(t,y(3,:),'LineWidth',2)
title('I1(t)')
%% solve system
function [t,y] = delayed
% parameter values:
p.V1=3;
p.Gin=216;
p.Q=0.5;
p.t1=6;
p.V3=10;
p.T2=50;
p.Eg=180;
p.T1=5;
lags=[p.T1 p.T2];
tf=5;
sol=dde23(@ddemodel,lags,zeros(3,1),[0,tf]);
t=linspace(0,tf,100);
y=deval(sol,t);
function df=ddemodel(~,y,lags)
df = zeros(3,1);
% functions
G=y(1);
I=y(2);
I1=y(3);
f1=@(G) 209/(1+exp(-G/300*p.V3 +6.6));
f2=@(G) 72*(1-exp(-G/144*p.V3));
f3=@(G) 0.01*G/p.V3;
f4=@(I) 90/(1+exp(-1.772*log(I/p.V1) + 7.76)) +4;
f5=@(I) 180/(1+exp(0.29*I/p.V1 -7.5));
df(1) = p.Gin-f2(G)-f3(G)*f4(I)+f5(lags(2));
df(2) =f1(G)-I/p.t1;
df(3) = p.Q*f1(G)-I/p.t1 +(1-p.Q)*f1(lags(1));
end
end
gives the following result:
dde_model.PNG
I think this may be a bit more helpful. If not let me know - but also let me know if it helps...

カテゴリ

Help Center および File ExchangeModel Predictive Control Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by