How can I solve multivariable Newton`s Method with implicit functions?
3 ビュー (過去 30 日間)
古いコメントを表示
I am trying to solve a system of non linear equations using Newton`s Method. The function F(X), the unknown variables X and the initial guess X0 are presented below:
F(X)=[V1+V2+Vblk-Vstring; I1(V1)-I2(V2); I1(V1)-Iblk(V3)];
X = [V1; V2; Vblk;];
X0 = [Voc; Voc; 0;];
Vstring is assigned from 91.1 to 0 so that Newtons`s Method must be applied for each value of Vstring to return the contribution of V1, V2 and Vblk across Vstring. However, in F(2) and F(3) the variables V1, V2 and Vblk are implicit functions of I1, I2 and Iblk. Before running Newton`s Method, the variables I1, I2 and Iblk are calculated by means of Lambert W function and then stored in arrays, so that variables I1, I2 and Iblk are known for any V1, V2 and Vblk values before Newton`s Method is applied. How could I solve the Newton`s Method considering these implicit functions for all Vstring values? I appreciate any help!
8 件のコメント
Torsten
2022 年 9 月 16 日
As far as I know, it's the only MATLAB tool available for systems with as many equations as variables.
All depends on the initial guesses for the variables. If they are far away from the true values, every nonlinear solver will have problems.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Systems of Nonlinear Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!