Doubly stochastic matrix in linear programming

5 ビュー (過去 30 日間)
Xia
Xia 2015 年 1 月 16 日
コメント済み: Matt J 2015 年 1 月 16 日
How may I get the vector x by using linprog(f,A,b), where b=Wy(y is a known vector) and W is all possible doubly stochastic matrix? Or other methods will work for lp given constraints involve doubly stochastic matrix, especially if W is high dimensional and enumeration seems infeasible?

採用された回答

Torsten
Torsten 2015 年 1 月 16 日
You mean how you can formulate the above problem for linprog ?
min: f'x
s.c.
A*x-Z*y=0
sum_i z_ij = 1
sum_j z_ij = 1
0 <= z_ij <= 1
Or what exactly are you asking for ?
Best wishes
Torsten.
  3 件のコメント
Matt J
Matt J 2015 年 1 月 16 日
The first constraint looks like it should be an inequality,
A*x-Z*y<=0
Xia
Xia 2015 年 1 月 16 日
編集済み: Xia 2015 年 1 月 16 日
No, and actually just the opposite. It’s an application of Investment test. However, your answer and codes are helpful and inspiring. Thank you so much Matt, for your time and kindness. Again, thanks Torsten. Merci guys.

サインインしてコメントする。

その他の回答 (1 件)

Matt J
Matt J 2015 年 1 月 16 日
編集済み: Matt J 2015 年 1 月 16 日
This assumes that A will always be non-empty.
[m,n]=size(A);
p=m^2+n; %all unknowns
fwx=f; fwx(p)=0;
Awx=[kron(-y.',speye(m)), A];
bwx=zeros(m,1);
C= kron(speye(m), ones(1,m));
R= kron(ones(1,m), speye(m));
Aeq=[C;R]; Aeq(end,p)=0;
beq= ones(2*m,1);
lb=-inf(1,p); lb(1:m^2)=0;
ub=+inf(1,p; lb(1:m^2)=1;
WX=linprog(fwx,Awx,bwx,Aeq,beq,lb,ub);
W=reshape(WX(1:m^2),m,[]);
x=WX(m^2+1:p);
  1 件のコメント
Matt J
Matt J 2015 年 1 月 16 日
No, and actually just the opposite.
You mean you definitely want equality in
A*x-Z*y=0
If so, modify the call to linprog as follows
WX=linprog(fwx,[],[],[Aeq;Awx], [beq; bwx ],lb,ub);

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Programming and Mixed-Integer Linear Programming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by