solve Nonlinear PDE and compare the analytical and numerical solutions

8 ビュー (過去 30 日間)
Hana Bachi
Hana Bachi 2022 年 3 月 19 日
編集済み: Torsten 2022 年 3 月 21 日
I wrote the following code for this problem, but the code stuck at ligne 56. what wrong with is and how can I avoid that problem?
clear all; close all; clc;
% Construct spatial mesh
Nx = 1650; % Number of spatial steps
xl = 0; % Left x boundary
xr = 1; % Right x boundary
dx = (xr-xl)/Nx; % Spatial step
x = xl:dx:xr; % x
% Construct temporal mesh
tf = 0.5; % Final time
dt = 1/3300; % Timestep
Nt = round(tf/dt); % Number of timesteps
t = 0:dt:tf; % t
% Parameters
umax = 15; % Found by a perturbation of t=10^-2
C = umax*dt/dx; % Convective Stability / Courant Number
disp("Courant Number: "+C)
V = dt/(dx*dx); % Viscous Stability / Diffusion Number
disp("Diffusion Number: "+V)
% Dephine phi(x)
phi=zeros(Nx+1,Nt+1);
tt=zeros(1,Nt+1);
for j=1:Nt
x(1,j+1)=x(1,j)+dx;
end
for j=1:Nt
tt(1,j+1)=tt(1,j)+dt;
end
for i=1:Nx+1
for j=1:Nt+1
A(j,i)=(50/3)*(x(j)-0.5+4.95*tt(i));
B(j,i)=(250/3)*(x(j)-0.5+0.75*tt(i));
C(j,i)=(500/3)*(x(j)-0.375);
phi(j,i)=(0.1*exp(-A(j,i))+0.5*exp(-B(j,i))+exp(-C(j,i)))/(exp(-A(j,i))+exp(-B(j,i))+exp(-C(j,i)));
end
end
% Define Boundary & Initial Conditions
% Boundary conditions (Dirichlet)
u(:,1)=phi(:,1);
%left boundary condition
u(1,1)=phi(1,1);
%right boundary condition
u(Nx+1,1)=phi(Nx+1,1);
% Define the right (MMr) and left (MMl) matrices in the Crank-Nicolson method
aal(1:Nx-2) = -V; % Below the main diagonal in MMl
bbl(1:Nx-1) = 2+2*V; % The main diagonal in MMl
ccl(1:Nx-2) = -V; % Above the main diagonal in MMl
MMl = diag(bbl,0)+diag(aal,-1)+diag(ccl,1); % Building the MMl matrix
aar(1:Nx-2) = V; % Below the main diagonal in MMr
bbr(1:Nx-1) = 2-2*V; % The main diagonal in MMr
ccr(1:Nx-2) = V; % Above the main diagonal in MMr
MMr = diag(bbr,0)+diag(aar,-1)+diag(ccr,1); % Building the MMr matrix
% Implementation of the Crank-Nicholson method
for j = 1:Nt
u(2:Nx,j+1) = inv(MMl)*MMr*u(2:Nx,j);
end
figure()
clf
plot(x,phi(:,ts+1),'b--o')
hold on
%plot(x,phi(:,1001))
xlabel('x')
ylabel('U[x,t]')
title('Analytical Solution')
figure()
clf
plot(x,u(:,:),'g')
hold on
%plot(x,phi(:,1001))
xlabel('x')
ylim([0 1.2])
ylabel('U[x,t]')
title('Numerical Solution')

採用された回答

Torsten
Torsten 2022 年 3 月 19 日
編集済み: Torsten 2022 年 3 月 19 日
In the recursion
% Implementation of the Crank-Nicholson method
for j = 1:Nt
u(2:Nx,j+1) = inv(MMl)*MMr*u(2:Nx,j);
end
you never address u(1,:) and u(Nx+1,:) which contain the boundary values of your problem.
So this loop cannot be correct to get the solution of your problem.
  10 件のコメント
Hana Bachi
Hana Bachi 2022 年 3 月 20 日
編集済み: Hana Bachi 2022 年 3 月 20 日
how can that be fixed without rewriting the code from scratch
my eauqtion has a factor of 0.003
du/dt +u* du/dx = 0.003*d^2u/dx^2
Torsten
Torsten 2022 年 3 月 20 日
編集済み: Torsten 2022 年 3 月 20 日
It can't be fixed.
At least the part of the code where you implement Crank-Nicholson has to be completely removed, i.e. the part starting with
% Define Boundary & Initial Conditions
% Boundary conditions (Dirichlet)
has to be written anew.

サインインしてコメントする。

その他の回答 (1 件)

Torsten
Torsten 2022 年 3 月 20 日
編集済み: Torsten 2022 年 3 月 21 日
D = 3e-3;
xstart = 0.0;
xend = 1.0;
dx = 1/400;
tstart = 0.0;
tend = 0.5;
dt = 0.01;
X = (xstart:dx:xend).';
T = (tstart:dt:tend);
nx = numel(X);
nt = numel(T);
U_ana = u_ana(T,X);
U = zeros(nx,nt);
U(:,1) = U_ana(:,1);
told = T(1);
uold = U(:,1);
for j = 2:nt
tnew = told + dt;
f = @(u)fun(u,uold,tnew,told,dt,X,nx,dx,D);
unew = fsolve(f,uold);
U(:,j) = unew;
told = tnew;
uold = unew;
j
end
plot(X,U(:,10))
hold on
plot(X,U_ana(:,10))
function res = fun(u,uold,t,told,dt,X,nx,dx,D)
res = zeros(nx,1);
res(1) = u(1) - 0.5*(u_ana(told,X(1)) + u_ana(t,X(1)));
res(2:nx-1) = (u(2:nx-1)-uold(2:nx-1))/dt - 0.5*( ...
(-uold(2:nx-1).*(uold(3:nx)-uold(1:nx-2))/(2*dx) + ...
D*(uold(3:nx)-2*uold(2:nx-1)+uold(1:nx-2))/dx^2) + ...
(-u(2:nx-1).*(u(3:nx)-u(1:nx-2))/(2*dx) + ...
D*(u(3:nx)-2*u(2:nx-1)+u(1:nx-2))/dx^2));
res(nx) = u(nx) - 0.5*(u_ana(told,X(nx)) + u_ana(t,X(nx)));
end
function out = u_ana(t,x)
A = 50/3*(x-0.5+4.95*t);
B = 250/3*(x-0.5+0.75*t);
C = 500/3*(x-0.375);
out = (0.1*exp(-A)+0.5*exp(-B)+exp(-C))./(exp(-A)+exp(-B)+exp(-C));
end
  10 件のコメント
Hana Bachi
Hana Bachi 2022 年 3 月 20 日
>> ver
-----------------------------------------------------------------------------------------------------
MATLAB Version: 9.11.0.1837725 (R2021b) Update 2
MATLAB License Number: 875352
Operating System: Microsoft Windows 7 Professionnel Version 6.1 (Build 7600)
Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode
-----------------------------------------------------------------------------------------------------
Torsten
Torsten 2022 年 3 月 20 日
You should check whether the optimization toolbox is installed because it seems the optimization toolbox is not:

サインインしてコメントする。

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by