how can in plot(teta,Xb)
1 回表示 (過去 30 日間)
古いコメントを表示
Sir,
I have a function like;
teta=((2/Bi)*Xb)+(1-3*(1-Xb)^n+2*(1-Xb))+((6/Da)*(1-(1-Xb)^m));
Where
teta=0:0.2:5;
n=2/3;
m=1/3;
Bi=constant's(inf, 100, 10, 1, 0.1)
Da=constant(100, 10, 1, 0.1)
I want to plot(teta,Xb)
8 件のコメント
Salaheddin Hosseinzadeh
2014 年 3 月 14 日
Ok, sounds better now
I'll post you an answer in some minutes ;)
回答 (2 件)
Salaheddin Hosseinzadeh
2014 年 3 月 14 日
We have to solve your equation so that we get Xb values for known values of teta
So let's do it as such
teta=0:0.2:5;
n=2/3;
m=1/3;
Bi=(inf, 100, 10, 1, 0.1)
Da=(100, 10, 1, 0.1)
Bi=100;
Da=100;
for i= 1:length(teta)
fxb=@(Xb) teta(i)-((2/Bi)*Xb)+(1-3*(1-Xb)^n+2*(1-Xb))+((6/Da)*(1-(1-Xb)^m))
valXb(i)=fzero(fxb,0); %this gives you Xb for (Bi=100,Da=100,teta=0:.25:5)
end
plot(teta,valXb)
title(['teta VS Xb for Bi=',num2str(Bi),'Da=',num2str(Da)])
Please work out he rest on your own, for different values of Bi and Da, either use for loop or matrix multiplication.
Hope that helped. code is not tested let me know if it had errors, sorry fo that
Good Luck!
0 件のコメント
Walter Roberson
2014 年 3 月 14 日
There are up to three real-valued solutions for each teta. For some Bi, Da combinations, there are no real-valued solutions. For other combinations, there are three real-valued solutions until teta passes a threshold, after which there is only one real-valued solution.
The algebraic solution for Xb in terms of teta is pretty messy.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!