Main Content

このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。

ssinint

シフトした正弦積分関数

説明

ssinint(X) は、シフトした正弦積分関数 ssinint(X) = sinint(X) — pi/2 を返します。

数値引数およびシンボリック引数に対するシフトした正弦積分関数

引数に応じて、ssinint は浮動小数点解またはシンボリック厳密解の結果を返します。

次の数値についてシフトした正弦積分関数を計算します。これらの数値はシンボリック オブジェクトではないため、ssinint は浮動小数点の結果を返します。

A = ssinint([- pi, 0, pi/2, pi, 1])
A =
   -3.4227   -1.5708   -0.2000    0.2811   -0.6247

シンボリック オブジェクトに変換された数値に対するシフトした正弦積分関数を計算します。ほとんどのシンボリックな (厳密な) 数値に対して、ssinint は未解決のシンボリックな呼び出しを返します。

symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))
symA =
[ - pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]

vpa を使用し、これらの解を浮動小数点数で近似します。

vpa(symA)
ans =
[ -3.4227333787773627895923750617977,...
-1.5707963267948966192313216916398,...
-0.20003415864040813916164340325818,...
0.28114072518756955112973167851824,...
-0.62471325642771360428996837781657]

シフトした正弦積分関数のプロット

シフトした正弦積分関数を、-4*pi から 4*pi までの範囲でプロットします。

syms x
fplot(ssinint(x),[-4*pi 4*pi])
grid on

Figure contains an axes object. The axes object contains an object of type functionline.

シフトした正弦積分関数を含む式の処理

diffint および taylor などの関数は ssinint を含む式を処理することができます。

シフトした正弦積分関数の 1 次および 2 次導関数を求めます。

syms x
diff(ssinint(x), x)
diff(ssinint(x), x, x)
ans =
sin(x)/x
 
ans =
cos(x)/x - sin(x)/x^2

シフトした正弦積分関数の不定積分を求めます。

int(ssinint(x), x)
ans =
cos(x) + x*ssinint(x)

ssinint(x) の式のテイラー級数展開を計算します。

taylor(ssinint(x), x)
ans =
x^5/600 - x^3/18 + x - pi/2

入力引数

すべて折りたたむ

入力値。シンボリック数、変数、式または関数、あるいはシンボリック数、変数、式または関数のベクトルまたは行列として指定します。

詳細

すべて折りたたむ

正弦積分関数

正弦積分関数は、次のように定義されます。

Si(x)=0xsin(t)tdt

シフトした正弦積分関数

シフトした正弦積分関数は、Ssi(x) = Si(x) - π/2 と定義されます。

参照

[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

バージョン履歴

R2014a で導入