Main Content

disp

クラス: GeneralizedLinearMixedModel

一般化線形混合効果モデルの表示

説明

disp(glme) は近似した一般化線形混合効果モデル glme を表示します。

入力引数

すべて展開する

一般化線形混合効果モデル。GeneralizedLinearMixedModel オブジェクトとして指定します。このオブジェクトのプロパティとメソッドについては、GeneralizedLinearMixedModel を参照してください。

すべて展開する

標本データを読み込みます。

load mfr

このシミュレーションされたデータは、世界中で 50 の工場を操業している製造企業から取得しており、各工場が完成品の生産のためにバッチ処理を実行しています。同社は各バッチの欠陥数を減少させるために新たな製造プロセスを開発しました。新しいプロセスの効果をテストするため、同社は実験に参加させる 20 工場を無作為に選びました。10 工場では新プロセスを実施しますが、残りの 10 工場では旧プロセスの実行を続けます。各 20 工場で、同社は 5 つのバッチ (合計 100 バッチ) を実行し以下のデータを記録しました。

  • 新しいプロセスがバッチに使用されたかどうかを示すフラグ (newprocess)

  • 各バッチの処理時間。時間単位 (time)

  • バッチの温度。摂氏 (temp)

  • バッチに使用する化学薬品の供給業者を示すカテゴリカル変数 (supplier)

  • バッチ内の欠陥数 (defects)

またデータに含まれる time_devtemp_dev は、摂氏 20 度で 3 時間の標準プロセスから得られる時間と温度の絶対偏差をそれぞれ表します。

固定効果予測子として newprocesstime_devtemp_dev および supplier を使用して一般化線形混合効果モデルを近似します。工場特有の変動に起因して品質に差がある可能性を考慮するために、factory 別にグループ化された切片の変量効果項を含めます。応答変数 defects はポアソン分布であり、このモデルの適切なリンク関数は対数です。係数の予測にラプラス近似メソッドを使用します。ダミー変数エンコードを 'effects' として指定すると、ダミー変数の係数の合計が 0 になります。

欠陥数はポアソン分布を使用してモデル化できます

defectsijPoisson(μij)

これは一般化線形混合効果モデルに対応します

log(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

ここで

  • defectsij は、バッチ j 処理中の工場 i で実行されたバッチで観測された欠陥数です。

  • μij は、バッチ j (j=1,2,...,5) 処理中の工場 i (i=1,2,...,20) に対応する欠陥の平均数です。

  • newprocessijtime_devij および temp_devij は、バッチ j 処理中の工場 i に対応する各変数の測定値です。たとえば newprocessij は、工場 i で実行されたバッチ j 処理中に新プロセスが使用されたかどうかを示します。

  • supplier_Cij および supplier_Bij はエフェクト (ゼロサム) コーディングを使用するダミー変数であり、バッチ j 処理中に工場 i で実行されたバッチに対して、それぞれ会社 C または B が加工化学薬品を供給したかどうかを示します。

  • biN(0,σb2) は、工場特有の品質変動に相当する、各工場 i の変量効果の切片です。

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

モデルを表示します。

disp(glme)
Generalized linear mixed-effects model fit by ML

Model information:
    Number of observations             100
    Fixed effects coefficients           6
    Random effects coefficients         20
    Covariance parameters                1
    Distribution                    Poisson
    Link                            Log   
    FitMethod                       Laplace

Formula:
    defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1 | factory)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    416.35    434.58    -201.17          402.35  

Fixed effects coefficients (95% CIs):
    Name                   Estimate     SE          tStat       DF    pValue    
    {'(Intercept)'}           1.4689     0.15988      9.1875    94    9.8194e-15
    {'newprocess' }         -0.36766     0.17755     -2.0708    94      0.041122
    {'time_dev'   }        -0.094521     0.82849    -0.11409    94       0.90941
    {'temp_dev'   }         -0.28317      0.9617    -0.29444    94       0.76907
    {'supplier_C' }        -0.071868    0.078024     -0.9211    94       0.35936
    {'supplier_B' }         0.071072     0.07739     0.91836    94       0.36078


    Lower        Upper    
       1.1515       1.7864
     -0.72019    -0.015134
      -1.7395       1.5505
      -2.1926       1.6263
     -0.22679     0.083051
    -0.082588      0.22473

Random effects covariance parameters:
Group: factory (20 Levels)
    Name1                  Name2                  Type           Estimate
    {'(Intercept)'}        {'(Intercept)'}        {'std'}        0.31381 

Group: Error
    Name                        Estimate
    {'sqrt(Dispersion)'}        1       

Model information 表は標本データの観測値の合計 (100)、固定効果および変量効果係数の数 (それぞれ 6 および 20)、共分散パラメーターの数 (1) を表示しています。また、応答変数は Poisson 分布であり、リンク関数は Log であり、近似メソッドが Laplace であることもわかります。

Formula はウィルキンソンの表記法によるモデル仕様を示します。

Model fit statistics 表はモデルの適合度の評価に使用された統計を表します。これには赤池情報量基準 (AIC)、ベイズ情報量基準 (BIC) 値、対数尤度 (LogLikelihood) および逸脱度 (Deviance) の値が含まれます。

Fixed effects coefficients 表は、fitglme が 95% の信頼区間を返したことを示します。これには固定効果予測子ごとに 1 行が含まれ、各列にはその予測子に対応する統計が含まれます。列 1 (Name) には各固定効果係数の名前が含まれ、列 2 (Estimate) にはその推定値が含まれ、列 3 (SE) には係数の標準誤差が含まれます。列 4 (tStat) には係数が 0 に等しいという仮説検定のための t 統計量が含まれます。列 5 (DF) と列 6 (pValue) には t 統計量に対応する自由度と p 値がそれぞれ含まれます。最後の 2 列 (Lower および Upper) には、各固定効果係数の 95% 信頼区間の下限と上限がそれぞれ表示されます。

Random effects covariance parameters は各グループ化変数 (ここでは factory のみ) の表を表示します。これにはレベルの総数 (20)、共分散パラメーターの型および推定値が含まれます。ここでの std は、工場の予測子に関連付けられている変量効果の標準偏差が fitglme から返されることを示します。この推定値は 0.31381 です。また、誤差パラメーターの型 (ここでは分散パラメーターの平方根) およびその推定値 1 を含む表も表示します。

fitglme により生成される標準表示は変量効果パラメーターの信頼区間を指定しません。covarianceParameters を使用して、これらの値を計算し表示します。

詳細

すべて展開する