ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

分類に NCA を使用して特徴量を判別するための正則化パラメーターの調整

この例では、交差検証を使用して fscnca の正則化パラメーターを調整する方法を示します。正則化パラメーターを調整すると、データ内の関連がある特徴量を正しく判別するために役立ちます。

標本データを読み込みます。

load('twodimclassdata.mat');

このデータセットは、[1] で説明されている方法を使用してシミュレートしたものです。これは 2 次元の 2 クラス分類問題です。1 番目のクラスのデータは、同じ確率をもつ 2 つの二変量正規分布 または から抽出されたものです。ここで、 および です。同様に、2 番目のクラスのデータは、同じ確率をもつ 2 つの二変量正規分布 または から抽出されたものです。ここで、 および です。このデータセットを作成するために使用した正規分布のパラメーターでは、[1] で使用されているデータよりデータのクラスターが緊密になります。

クラス別にグループ化したデータの散布図を作成します。

figure()
gscatter(X(:,1),X(:,2),y)
xlabel('x1')
ylabel('x2')

100 個の無関係な特徴量を に追加します。はじめに、平均が 0、分散が 20 の正規分布からデータを生成します。

n = size(X,1);
rng('default')
XwithBadFeatures = [X,randn(n,100)*sqrt(20)];

すべての点が 0 と 1 の間になるようにデータを正規化します。

XwithBadFeatures = bsxfun(@rdivide,...
    bsxfun(@minus,XwithBadFeatures,min(XwithBadFeatures,[],1)),...
    range(XwithBadFeatures,1));
X = XwithBadFeatures;

既定の Lambda (正則化パラメーター ) の値を使用して、NCA モデルをデータにあてはめます。LBFGS ソルバーを使用し、収束情報を表示します。

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1,...
              'Solver','lbfgs');
 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 |  9.519258e-03 |   1.494e-02 |   0.000e+00 |        |   4.015e+01 |   0.000e+00 |   YES  |
|        1 | -3.093574e-01 |   7.186e-03 |   4.018e+00 |    OK  |   8.956e+01 |   1.000e+00 |   YES  |
|        2 | -4.809455e-01 |   4.444e-03 |   7.123e+00 |    OK  |   9.943e+01 |   1.000e+00 |   YES  |
|        3 | -4.938877e-01 |   3.544e-03 |   1.464e+00 |    OK  |   9.366e+01 |   1.000e+00 |   YES  |
|        4 | -4.964759e-01 |   2.901e-03 |   6.084e-01 |    OK  |   1.554e+02 |   1.000e+00 |   YES  |
|        5 | -4.972077e-01 |   1.323e-03 |   6.129e-01 |    OK  |   1.195e+02 |   5.000e-01 |   YES  |
|        6 | -4.974743e-01 |   1.569e-04 |   2.155e-01 |    OK  |   1.003e+02 |   1.000e+00 |   YES  |
|        7 | -4.974868e-01 |   3.844e-05 |   4.161e-02 |    OK  |   9.835e+01 |   1.000e+00 |   YES  |
|        8 | -4.974874e-01 |   1.417e-05 |   1.073e-02 |    OK  |   1.043e+02 |   1.000e+00 |   YES  |
|        9 | -4.974874e-01 |   4.893e-06 |   1.781e-03 |    OK  |   1.530e+02 |   1.000e+00 |   YES  |
|       10 | -4.974874e-01 |   9.404e-08 |   8.947e-04 |    OK  |   1.670e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 9.404e-08
              Two norm of the final step     = 8.947e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 9.404e-08, TolFun = 1.000e-06
EXIT: Local minimum found.

特徴量の重みをプロットします。無関係な特徴量の重みはゼロに非常に近いはずです。

figure
semilogx(ncaMdl.FeatureWeights,'ro');
xlabel('Feature index');
ylabel('Feature weight');
grid on;

すべての重みがゼロに非常に近くなっています。これは、モデルの学習に使用した の値が大きすぎることを示しています。 では、すべての特徴量の重みがゼロに近づきます。したがって、関連がある特徴量を判別するには、ほとんどのケースで正則化パラメーターを調整することが重要です。

5 分割交差検証を使用して、fscnca を使用する特徴選択用に を調整します。 の調整とは、分類損失が最小になる の値を求めることを意味します。交差検証を使用して を調整する手順は次のようになります。

1.はじめに、データを 5 つの分割に分割します。各分割について、cvpartition は各データの 4/5 を学習セットとして、1/5 をテスト セットとして割り当てます。

cvp           = cvpartition(y,'kfold',5);
numtestsets   = cvp.NumTestSets;
lambdavalues  = linspace(0,2,20)/length(y);
lossvalues    = zeros(length(lambdavalues),numtestsets);

2.各分割の学習セットを使用して、 の各値について近傍成分分析 (NCA) モデルに学習をさせます。

3.NCA モデルを使用して、分割内の対応するテスト セットの分類損失を計算します。損失の値を記録します。

4.これをすべての分割およびすべての の値に対して繰り返します。

for i = 1:length(lambdavalues)
    for k = 1:numtestsets

        % Extract the training set from the partition object
        Xtrain = X(cvp.training(k),:);
        ytrain = y(cvp.training(k),:);

        % Extract the test set from the partition object
        Xtest  = X(cvp.test(k),:);
        ytest  = y(cvp.test(k),:);

        % Train an nca model for classification using the training set
        ncaMdl = fscnca(Xtrain,ytrain,'FitMethod','exact',...
            'Solver','lbfgs','Lambda',lambdavalues(i));

        % Compute the classification loss for the test set using the nca
        % model
        lossvalues(i,k) = loss(ncaMdl,Xtest,ytest,...
            'LossFunction','quadratic');

    end
end

分割の平均損失値を の値についてプロットします。

figure()
plot(lambdavalues,mean(lossvalues,2),'ro-');
xlabel('Lambda values');
ylabel('Loss values');
grid on;

最小の平均損失に対応する の値を求めます。

[~,idx] = min(mean(lossvalues,2)); % Find the index
bestlambda = lambdavalues(idx) % Find the best lambda value
bestlambda =

    0.0037

最適な の値を使用して、すべてのデータに NCA モデルをあてはめます。LBFGS ソルバーを使用し、収束情報を表示します。

ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1,...
     'Solver','lbfgs','Lambda',bestlambda);
 o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|        0 | -1.246913e-01 |   1.231e-02 |   0.000e+00 |        |   4.873e+01 |   0.000e+00 |   YES  |
|        1 | -3.411330e-01 |   5.717e-03 |   3.618e+00 |    OK  |   1.068e+02 |   1.000e+00 |   YES  |
|        2 | -5.226111e-01 |   3.763e-02 |   8.252e+00 |    OK  |   7.825e+01 |   1.000e+00 |   YES  |
|        3 | -5.817731e-01 |   8.496e-03 |   2.340e+00 |    OK  |   5.591e+01 |   5.000e-01 |   YES  |
|        4 | -6.132632e-01 |   6.863e-03 |   2.526e+00 |    OK  |   8.228e+01 |   1.000e+00 |   YES  |
|        5 | -6.135264e-01 |   9.373e-03 |   7.341e-01 |    OK  |   3.244e+01 |   1.000e+00 |   YES  |
|        6 | -6.147894e-01 |   1.182e-03 |   2.933e-01 |    OK  |   2.447e+01 |   1.000e+00 |   YES  |
|        7 | -6.148714e-01 |   6.392e-04 |   6.688e-02 |    OK  |   3.195e+01 |   1.000e+00 |   YES  |
|        8 | -6.149524e-01 |   6.521e-04 |   9.934e-02 |    OK  |   1.236e+02 |   1.000e+00 |   YES  |
|        9 | -6.149972e-01 |   1.154e-04 |   1.191e-01 |    OK  |   1.171e+02 |   1.000e+00 |   YES  |
|       10 | -6.149990e-01 |   2.922e-05 |   1.983e-02 |    OK  |   7.365e+01 |   1.000e+00 |   YES  |
|       11 | -6.149993e-01 |   1.556e-05 |   8.354e-03 |    OK  |   1.288e+02 |   1.000e+00 |   YES  |
|       12 | -6.149994e-01 |   1.147e-05 |   7.256e-03 |    OK  |   2.332e+02 |   1.000e+00 |   YES  |
|       13 | -6.149995e-01 |   1.040e-05 |   6.781e-03 |    OK  |   2.287e+02 |   1.000e+00 |   YES  |
|       14 | -6.149996e-01 |   9.015e-06 |   6.265e-03 |    OK  |   9.974e+01 |   1.000e+00 |   YES  |
|       15 | -6.149996e-01 |   7.763e-06 |   5.206e-03 |    OK  |   2.919e+02 |   1.000e+00 |   YES  |
|       16 | -6.149997e-01 |   8.374e-06 |   1.679e-02 |    OK  |   6.878e+02 |   1.000e+00 |   YES  |
|       17 | -6.149997e-01 |   9.387e-06 |   9.542e-03 |    OK  |   1.284e+02 |   5.000e-01 |   YES  |
|       18 | -6.149997e-01 |   3.250e-06 |   5.114e-03 |    OK  |   1.225e+02 |   1.000e+00 |   YES  |
|       19 | -6.149997e-01 |   1.574e-06 |   1.275e-03 |    OK  |   1.808e+02 |   1.000e+00 |   YES  |

|====================================================================================================|
|   ITER   |   FUN VALUE   |  NORM GRAD  |  NORM STEP  |  CURV  |    GAMMA    |    ALPHA    | ACCEPT |
|====================================================================================================|
|       20 | -6.149997e-01 |   5.764e-07 |   6.765e-04 |    OK  |   2.905e+02 |   1.000e+00 |   YES  |

         Infinity norm of the final gradient = 5.764e-07
              Two norm of the final step     = 6.765e-04, TolX   = 1.000e-06
Relative infinity norm of the final gradient = 5.764e-07, TolFun = 1.000e-06
EXIT: Local minimum found.

特徴量の重みをプロットします。

figure
semilogx(ncaMdl.FeatureWeights,'ro');
xlabel('Feature index');
ylabel('Feature weight');
grid on;

fscnca は、初めの 2 つの特徴量は関連するが、残りはそうではないことを正しく判別します。初めの 2 つの特徴量は単独では情報を与えませんが、一緒にすると正確な分類モデルが得られます。

参考文献

1.Yang, W., K. Wang, W. Zuo. "Neighborhood Component Feature Selection for High-Dimensional Data." Journal of Computers. Vol. 7, Number 1, January, 2012.