This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Random Numbers from Normal Distribution with Specific Mean and Variance

This example shows how to create an array of random floating-point numbers that are drawn from a normal distribution having a mean of 500 and variance of 25.

The randn function returns a sample of random numbers from a normal distribution with mean 0 and variance 1. The general theory of random variables states that if x is a random variable whose mean is μx and variance is σx2, then the random variable, y, defined by y=ax+b,where a and b are constants, has mean μy=aμx+b and variance σy2=a2σx2. You can apply this concept to get a sample of normally distributed random numbers with mean 500 and variance 25.

First, initialize the random number generator to make the results in this example repeatable.


Create a vector of 1000 random values drawn from a normal distribution with a mean of 500 and a standard deviation of 5.

a = 5;
b = 500;
y = a.*randn(1000,1) + b;

Calculate the sample mean, standard deviation, and variance.

stats = [mean(y) std(y) var(y)]
stats = 1×3

  499.8368    4.9948   24.9483

The mean and variance are not 500 and 25 exactly because they are calculated from a sampling of the distribution.