mvnrstd
Evaluate standard errors for multivariate normal regression model
Syntax
Description
[
evaluates standard errors for a multivariate normal regression model without missing
data. The model has the formStdParameters,StdCovariance] = mvnrstd(Data,Design,Covariance)
for samples k = 1, ... ,
NUMSAMPLES.
mvnrstd computes two outputs:
StdParametersis aNUMPARAMS-by-1column vector of standard errors for each element ofParameters, the vector of estimated model parameters.StdCovarianceis aNUMSERIES-by-NUMSERIESmatrix of standard errors for each element ofCovariance, the matrix of estimated covariance parameters.Note
mvnrstdoperates slowly when you calculate the standard errors associated with the covariance matrixCovariance.
[
computes the log-likelihood function based on current maximum likelihood parameter
estimates without missing data using an optional argument.StdParameters,StdCovariance] = mvnrstd(___,CovarFormat)
Input Arguments
Output Arguments
More About
References
[1] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd Edition. John Wiley & Sons, Inc., 2002.
Version History
Introduced in R2006a