Main Content

このページの翻訳は最新ではありません。ここをクリックして、英語の最新版を参照してください。

nichols

周波数応答のニコルス線図

説明

nichols(sys) は、動的システム モデル sys の周波数応答のニコルス線図を作成します。プロットは、システム応答のゲイン (dB 単位) と位相 (度単位) を周波数の関数として表示します。nichols は、システム ダイナミクスに基づいてプロットする周波数を自動的に決定します。ニコルス線図のグリッド線を既存の SISO ニコルス線図に重ねる場合は、ngrid を使用します。

sys が多入力多出力 (MIMO) モデルである場合、nichols はニコルス線図の配列を生成し、各プロットは 1 組の I/O の周波数応答を示します。

sys が複素係数をもつモデルである場合、nichols 線図には正と負の両方の周波数で構成される等高線が表示されます。実数係数をもつモデルの場合、nichols には正の周波数のみが表示されます。

nichols(sys1,sys2,...,sysN) は、複数の動的システムに対する周波数応答のニコルス線図を同じプロット上にプロットします。すべてのシステムは入力数と出力数が同じでなければなりません。

nichols(sys1,LineSpec1,...,sysN,LineSpecN) はプロット内の各システムの色、ライン スタイルおよびマーカーを指定します。

nichols(___,w) は、w で指定された周波数の応答をプロットします。

  • w が形式 {wmin,wmax} の cell 配列の場合、nicholswmin から wmax の範囲の周波数で線図をプロットします。

  • w が周波数のベクトルの場合、nichols はそれぞれの指定された周波数で線図をプロットします。ベクトル w には負と正の両方の周波数を含めることができます。

w は、前述の構文のすべての入力引数の組み合わせで使用できます。

[mag,phase,wout] = nichols(sys) は、ベクトル wout の各周波数での応答のゲインと位相を返します。関数はシステム ダイナミクスに基づいて wout の周波数を自動的に決定します。この構文はプロットを描画しません。

[mag,phase,wout] = nichols(sys,w) は、w で指定された周波数での応答データを返します。

  • w が形式 {wmin,wmax} の cell 配列の場合、woutwmin から wmax の範囲の周波数を含みます。

  • w が周波数のベクトルである場合、wout = w です。

すべて折りたたむ

次のシステムのニコルス グリッド線付きのニコルス応答をプロットします。

H(s)=-4s4+48s3-18s2+250s+600s4+30s3+282s2+525s+60.

H = tf([-4 48 -18 250 600],[1 30 282 525 60]);
nichols(H)
ngrid

Figure contains an axes object. The axes object contains an object of type line. This object represents H.

ニコルス線図のコンテキスト メニューには、[ズーム] の下に [タイト] オプションがあります。このオプションを使用して、ニコルス線図の制約されていない分岐を切り取ることができます。

指定された周波数範囲でニコルス線図を作成します。周波数の特定の範囲でダイナミクスに焦点を合わせるときにこの方法を使用します。

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
nichols(H,{1,100})

Figure contains an axes object. The axes object contains an object of type line. This object represents H.

cell 配列 {1,100} は、ニコルス線図に最小および最大の周波数値を指定します。このように周波数の範囲を指定すると、関数は周波数応答データの中間点を選択します。

あるいは、周波数応答の評価とプロットに使用する周波数点のベクトルを指定します。

w = 1:0.5:100;
nichols(H,w,'.-')

Figure contains an axes object. The axes object contains an object of type line. This object represents H.

nichols は、指定された周波数のみで周波数応答をプロットします。

連続時間システムの周波数応答を、同一のニコルス線図にある等価な離散化システムと比較します。

連続時間動的システムと離散時間動的システムを作成します。

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

両方のシステムを表示するニコルス線図を作成します。

nichols(H,Hd)

Figure contains an axes object. The axes object contains 2 objects of type line. These objects represent H, Hd.

入力引数 LineSpec を使って、ニコルス線図に各システムのライン スタイル、色、またはマーカーを指定します。

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
nichols(H,'r',Hd,'b--')

Figure contains an axes object. The axes object contains 2 objects of type line. These objects represent H, Hd.

最初の LineSpec である 'r' は、H の応答に赤の実線を指定します。2 番目の LineSpec である 'b--' は、Hd の応答に青の破線を指定します。

SISO システムの周波数応答のゲインと位相を計算します。

周波数を指定しない場合、nichols はシステム ダイナミクスに基づいて周波数を選択し、これを 3 番目の出力引数に返します。

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag,phase,wout] = nichols(H);

H は SISO モデルなので、最初の 2 つの次元 magphase はどちらも 1 です。3 番目の次元は wout の周波数点の数です。

size(mag)
ans = 1×3

     1     1   110

length(wout)
ans = 110

したがって、mag の 3 番目の次元の各エントリは、wout の対応する周波数における応答のゲインを提供します。

この例では 2 出力、3 入力のシステムを作成します。

rng(0,'twister');
H = rss(4,2,3);

このシステムでは、nichols が各 I/O チャネルの周波数応答を個別のプロットとして単一の Figure 内にプロットします。

nichols(H)

Figure contains 6 axes objects. Axes object 1 with title From: In(1) contains an object of type line. This object represents H. Axes object 2 contains an object of type line. This object represents H. Axes object 3 with title From: In(2) contains an object of type line. This object represents H. Axes object 4 contains an object of type line. This object represents H. Axes object 5 with title From: In(3) contains an object of type line. This object represents H. Axes object 6 contains an object of type line. This object represents H.

1 ~ 10 ラジアンの 20 の周波数でこれらの応答のゲインと位相を計算します。

w = logspace(0,1,20);
[mag,phase] = nichols(H,w);

magphase は 3 次元配列で、最初の 2 つの次元は H の出力次元と入力次元に対応し、3 番目の次元は周波数の数です。たとえば、mag の次元を確認します。

size(mag)
ans = 1×3

     2     3    20

したがって、たとえば mag(1,3,10) は、w 内の 10 番目の周波数で計算された、3 番目の入力から最初の出力への応答のゲインです。同様に、phase(1,3,10) には同じ応答の位相が含まれています。

複素係数をもつモデルと実数係数をもつモデルのニコルス線図を同じプロット上に作成します。

rng(0)
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = rss(7);
nichols(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')

Figure contains an axes object. The axes object contains 2 objects of type line. These objects represent Complex-coefficient model, Real-coefficient model.

複素係数をもつモデルの場合、nichols には正と負の両方の周波数で構成される等高線が表示されます。実数係数をもつモデルの場合、複素係数をもつモデルが存在していても、プロットには正の周波数のみが表示されます。曲線をクリックして、正と負の周波数に対応するセクションと値をさらに調査できます。

入力引数

すべて折りたたむ

動的システム。SISO または MIMO 動的システム モデルか、動的システム モデルの配列として指定します。使用できる動的システムには次のようなものがあります。

  • tfzpkss モデルなどの連続時間または離散時間の数値 LTI モデル。

  • genssuss (Robust Control Toolbox) モデルなどの一般化された、あるいは不確かさをもつ LTI モデル (不確かさをもつモデルを使用するには Robust Control Toolbox™ ソフトウェアが必要です)。

    • 調整可能な制御設計ブロックの場合、関数は周波数応答データをプロットする処理と返す処理の両方においてモデルをその現在の値で評価します。

    • 不確かさをもつ制御設計ブロックの場合、関数はモデルのノミナル値とランダム サンプルをプロットします。出力引数を使用する場合、関数はノミナル モデルのみの周波数応答データを返します。

  • frd モデルなどの周波数応答データ モデル。このようなモデルの場合、関数はモデルで定義されている周波数での応答をプロットします。

  • idtf (System Identification Toolbox)idss (System Identification Toolbox)idproc (System Identification Toolbox) モデルなどの同定された LTI モデル。同定されたモデルを使用するには System Identification Toolbox™ ソフトウェアが必要です。

sys がモデルの配列である場合、関数は同じ座標軸上に配列のすべてのモデルの周波数応答をプロットします。

ライン スタイル、マーカー、色。1、2、または 3 文字の string または文字ベクトルとして指定します。文字が表示される順序は任意です。3 つの特性 (ライン スタイル、マーカーおよび色) をすべて指定する必要はありません。たとえば、ライン スタイルを省略してマーカーを指定した場合、プロットはラインなしでマーカーのみを表示します。この引数の設定の詳細については、関数 plot の入力引数 LineSpec を参照してください。

例: 'r--' は赤い破線を指定します。

例: '*b' は青いアスタリスク マーカーを指定します。

例: 'y' は黄色いラインを指定します。

周波数応答を計算およびプロットする周波数。cell 配列 {wmin,wmax} または周波数値のベクトルとして指定します。

  • w が形式 {wmin,wmax} の cell 配列の場合、関数は wmin から wmax の範囲の周波数で応答を計算します。

  • w が周波数のベクトルの場合、関数は指定された各周波数で応答を計算します。たとえば、logspace を使用すると、対数的に等間隔な周波数値の行ベクトルを生成できます。ベクトル w には正と負の両方の周波数を含めることができます。

複素係数をもつモデルでは、プロットに対して周波数範囲 [wmin,wmax] を指定する場合、プロットには正の周波数 [wmin,wmax] と負の周波数 [–wmax,–wmin] の両方で構成される等高線が表示されます。

周波数はラジアン/TimeUnit 単位で指定します。ここで TimeUnit はモデルの TimeUnit プロパティです。

出力引数

すべて折りたたむ

システム応答のゲイン (絶対単位)。3 次元配列として返されます。この配列の次元は (システム出力数) × (システム入力数) × (周波数点数) です。

  • SISO システムの場合、mag(1,1,k)w または woutk 番目の周波数における応答のゲインを提供します。例については、ニコルス応答のゲインと位相データを参照してください。

  • MIMO システムの場合、mag(i,j,k)j 番目の入力から i 番目の出力への k 番目の周波数における応答のゲインを提供します。例については、MIMO システムのニコルス線図を参照してください。

ゲインを絶対単位からデシベルに変換するには、次を使用します。

magdb = 20*log10(mag)

システム応答の位相 (度単位)。3 次元配列として返されます。この配列の次元は (出力数) × (入力数) × (周波数点数) です。

  • SISO システムの場合、phase(1,1,k)w または woutk 番目の周波数で応答の位相を提供します。例については、ニコルス応答のゲインと位相データを参照してください。

  • MIMO システムの場合、phase(i,j,k)j 番目の入力から i 番目の出力への k 番目の周波数における応答の位相を提供します。例については、MIMO システムのニコルス線図を参照してください。

関数がシステム応答を返す周波数。列ベクトルとして返されます。入力引数 w を使用して周波数を指定する場合を除き、関数はモデル ダイナミクスに基づいて周波数値を選択します。

wout には複素係数をもつモデルの負の周波数値も含まれます。

周波数値はラジアン/TimeUnit です。ここで、TimeUnitsysTimeUnit プロパティ値です。

ヒント

  • 追加のプロット カスタマイズ オプションが必要な場合は、代わりに nicholsplot を使用します。

バージョン履歴

R2006a より前に導入