
C l e v e ’ s C o r n e r

New ordinary differential equation solvers for MATLAB and SIMULINK

G o l den ODEs

by Cleve Moler

A
fter matrices, ordinary differential equations–ODEs–

are MA T L A B’s most important mathematical objects.

ODEs are also at the heart of SI M U L I N K’s modeling

and simulation capabilities.

For many years, MA T L A B has had only two ODE solvers

available, o d e 2 3 and o d e 4 5. Even though they employ fairly

simple algorithms, they have proved remarkably effective.

SI M U L I N K provides some additional methods, but they are not

easily accessible to MA T L A B users. We have recently developed

a suite of new, more powerful, ODE solvers for MA T L A B. A

preliminary version of the suite is available from The

MathWorks FTP site and the complete suite will be included

in MA T L A B version 5 and SI M U L I N K version 2.

The authors of the ODE suite are Larry Shampine and

Mark Reichelt. Shampine is a professor at Southern Methodist

University, the author of two books and several dozen papers

on the numerical solution of ODEs, and a consultant to

The MathWorks. Reichelt is a member of The MathWorks

development staff.

There are five new routines in the suite; each of them is the

method of choice for a particular set of problems. Two of the

routines are intended to replace o d e 2 3 and o d e 4 5; they are

based on new methods and have significant new capabilities.

Two other routines are intended for s t i f f problems. The fif t h

routine is the only one in the suite that is based on a classic

formula, whereas the other four are based on new formulas

developed by Shampine and others specifically for the

MA T L A B and SI M U L I N K e n v i r o n m e n t .

All five new routines share a common calling sequence. All

are intended to solve a general system of differential equations

of form

y' = f(t,y)

where t is the scalar independent variable, y = y(t) is the vector

of dependent variables, the prime denotes differentiation with

respect to t, and f is a vector-valued function defined in an

M - fil e .

All five new routines approximate the solution by sampling

it at a sequence of discrete time values, tn, and all fiv e

automatically vary the step size, hn = tn + 1 - tn, in such a way

that an estimate of the error in the solution is less than a

s p e c i fied tolerance.

The digits in each routine name, like the 2 and 3 in o d e 2 3,

refer to the o r d e r of the underlying method. So, o d e 2 3

employs two approximations, one of order 2 and one of order

3, and uses their difference to estimate the error in each step.

All the methods are based on local polynomial or Taylor series

approximations. The order is roughly the degree of the

polynomial or the number of terms in the Taylor series. More

precisely, the order is p if the local error is proportional to hp + 1

and the overall error is proportional to hp. For a third order

method, if the step size is cut by a factor of 1/2, the overall

error will be reduced by a factor of about 1/8.

Numerical methods for ODEs can be classified as single step

or m u l t i s t e p. The best known single step algorithms are the

classic Runge-Kutta methods. Carl Runge was one of the

fathers of modern applied mathematics; he published several

differential formulas for the numerical solution of ODEs in

1895. Wilhelm Kutta independently introduced the general

method in 1901. The basic idea is to treat f (t , y) as a function of

two independent variables, sample the function for several

different values of these variables, combine the samples to

approximate the Taylor series, and integrate the resulting

Stiffness of the van der Pol
nonlinear oscillator

y” = (1 - y2)y’ - y

increases as increases.

eve Moler is chairman

d co-founder of

e MathWorks. His

mail address is

o l e r @ m a t h w o r k s . c o m .

approximation over one time step. Each step of the classic

method begins anew; nothing is remembered from previous

steps. There is an interesting, but complicated, relationship

between the number of function evaluations per step and the

resulting order. One, two, three or four evaluations lead to

methods of order one, two, three or four. But six evaluations

are required to achieve a fifth order method.

The classic multistep methods were developed by J. C.

Adams. His first publication was in 1883, although he

apparently knew about the techniques for many years before

then. The idea is to use the values of y at several previous time

steps as the basis for a polynomial approximation over the

next time step. In principle, the order can be increased without

increasing the number of function evaluations per step by

simply using more previous values. In practice, modern

multistep methods automatically determine the order, as well

as the step size, and rarely use orders above 12 or 13.

Numerical methods for ODEs can also be classified as

e x p l i c i t or i m p l i c i t. Explicit methods simply evaluate the

function f (t , y) for values of t and y determined earlier in the

algorithm. Implicit methods solve nonlinear systems of

simultaneous equations derived from the function f to obtain

the next value of y at each time step. The solution process uses

matrix computations involving the Jacobian matrix of partial

derivatives, ∂ f / ∂ y. In some special cases, the functions in the

Jacobian are easy to find and an M-file can be provided which

evaluates them. But, more often, it is inconvenient to generate

the Jacobian and so it must also be approximated numerically.

Implicit numerical methods are important for solving s t i f f

problems. Stiffness is an elusive and sometimes misunderstood

concept. Roughly, it means there are components of the

solution that are varying on such widely different time scales

that the size of the step taken by explicit methods is

unacceptably small. A stiff problem is not unstable, or ill-

conditioned, or even difficult to solve; it just takes classic

Runge-Kutta or Adams methods an impossibly long time to

achieve reasonable accuracy. We’ll have an example later. The

first widely used software for stiff problems was published by

C. W. (Bill) Gear in 1971. Gear’s software uses a class of

variable order, multistep, implicit methods known as

“backwards differentiation formulas,” or BDFs.

Modern numerical methods should also come with

i n t e r p o l a n t s; these allow the solution y (t) to be evaluated for

any value of t without evaluating f (t , y). They also allow

e f ficient event handling and zero crossing, which involves

finding a value of t for which y (t) is equal to a specified value.

Adams and BDF methods have natural interpolants, but

developing interpolants for Runge-Kutta methods is a

contemporary research topic.

With this background, we can now describe the five new

O D E routines. All five include error estimation, step size

control, and interpolation.

o d e 2 3 A new pair of explicit Runge-Kutta formulas, of

orders 2 and 3.

o d e 4 5 A new pair of explicit Runge-Kutta formulas, of

orders 4 and 5.

o d e 1 1 3 A new implementation of the explicit Adams

predictor-corrector methods, with variable

order from 1 to 13.

o d e 2 3 s A new pair of linearly implicit Runge-Kutta

formulas, of orders 2 and 3.

o d e 1 5 s A new class of implicit multistep methods,

“numerical differentiation formulas,” NDFs,

with variable order from 1 to 5.

The letter s stands for stiff. The s methods can be used for

nonstiff problems, but they are inefficient because each step

requires solution of a linear equation involving the Jacobian.

The non-s functions can be used for stiff problems, but they

are inefficient because each step is too small.

One difficulty with the old o d e 4 5 is that it is “too

accurate.” Its natural step size choice produces output which is

too widely spaced to give good, smooth plots of the solution.

With its interpolation feature, the new o d e 4 5 can produce

smooth output at reasonable cost.

In his talk at last fall’s MA T L A B Conference, Shampine

Interpolation and event handling facilities allow the efficient simulation of a
bouncing ball.

e ODE suite is available

m The MathWorks. Point

r Web browser to the

hWorks home page

://www.mathworks.com

 then click on “Software

ary, MathWorks

les.” A postscript copy of

aper by Shampine and

helt is available in the

e directory.

illustrated the new ODE suite with an interesting example, a

scalar, nonlinear equation

y' = y2(1 - y)

This equation is a simple model of flame propagation. (See

R. E. O’Malley, Singular Perturbation Methods for Ordinary

Differential Equations, Springer, 1991). The initial condition

prescribes a small value for y and the integration is carried out

over an interval whose length is twice the reciprocal of the

initial value

y(0) = 10- 4

0 <= t <= 2•104 .

If the equation were simply y' = y2, the solution would be

y(t) = 1/(104 - t), which becomes infinite in finite time as t

approaches the midpoint of the interval. But the (1 - y) f a c t o r

prevents y (t) from becoming larger than 1. The first graph

shows the solution computed by o d e 2 3 s.

This problem is interesting because it changes from being

nonstiff to stiff halfway through the interval. Stiffness is often

d e fined by saying the Jacobian has widely varying eigenvalues,

but in this case, the Jacobian is 1-by-1; there is only one

eigenvalue. On the second half of the interval the solution is

very stable. It behaves like y (t) = 1 - e- t, which doesn’t blow up

and doesn’t decay; it just sticks close to y = 1.

Both two stiff solvers handle this problem easily. o d e 2 3 s

takes only 55 steps to traverse the interval. o d e 1 5 s takes a little

longer, 103 steps. The three nonstiff solvers do not fare so well

on the last half of the interval. The second graph shows the

output produced by o d e 4 5. It covers the first half of the

interval more quickly than the stiff solvers, but then requires

over 3000 steps and over two minutes of computer time to

complete the job. The computed result is within the prescribed

tolerance (which is 10- 3); it just takes too long to compute.

The third graph shows stiffness in action. We have zoomed

in the portion of the o d e 4 5 graph where y (t) first approaches

1. Think of yourself hiking along a narrow canyon with steep

walls on either side. If you keep looking straight ahead and

anticipate where you are going, you will not have any trouble.

This is what the implicit methods are capable of doing. But if

you sample the terrain by stepping to either side, the steep

gradients will force you to oscillate back and forth across the

desired trajectory. You will eventually reach your destination,

but it will probably be long after dark when you get there. ■

ode23s solves a
stiff problem easily.

ode45 takes over
3000 steps.

Detailed look at
ode45 behavior.

