
MathWorksNews&Notes
The Magazine for the MATLAB® and Simulink® Community

IN THE FRONT SEAT
with a Driver-in-the-Loop Automotive Simulator

Power Converter
Control Software
for J-PARC Particle
Accelerator

ALSO IN THIS ISSUE

Longitudinal Controls
for a Self-Driving Taxi

Run MATLAB Image
Processing on Raspberry
Pi and NVIDIA

Integrating Risk
Analytics and Modeling
in a Production
Enterprise Application

Beyond Image Classification:
Apply Deep Learning
Whether the input is a D-signal,
time-series data, or even text,
CNNs offer the ability to process
data in new ways.

Three Ways to Estimate
Remaining Useful Life for
Predictive Maintenance
Use these Predictive Maintenance
Toolbox models for estimating RUL
from lifetime data, run-to-failure
data, and threshold values.

Run MATLAB Image Processing
Algorithms on Raspberry Pi
and NVIDIA Jetson
Prototype an algorithm on a
Raspberry Pi board and deploy it
to an NVIDIA Jetson Tx1 platform to
achieve real-time performance.

3020 36

HOW TOs

FEATURES

Longitudinal Controls for a Self-Driving Taxi
“The very first passenger to ride in one of our self-driving
taxis was a blind woman named Bev. Bev said that the
ride felt much smoother than some vehicles driven by
sighted people.”

A Smartphone-Based Signals
and Systems Laboratory
“The students generate C code from their MATLAB
programs for mobile apps that they run on their Android
or iPhone devices. This approach gives them first-hand
experience with hardware constraints and implementation.”

Integrating Risk Analytics and Modeling in a
Production Enterprise Application
Swiss Re developers made their core risk models available
as a production IT system.

Power Converter Control Software for the
J-PARC Particle Accelerator
Japan’s High Energy Accelerator Research Organization
(KEK) engineered a power converter capable of delivering
more than 100 MW to electromagnets used to control
proton beams in J-PARC’s main ring particle accelerator. 

Putting Engineers in the Front Seat with a
Driver-in-the-Loop Automotive Simulator
“We were astonished when dozens of students began
showing up after school hours to ask us how they could
improve their MATLAB algorithms and develop more
advanced solutions.”

Cleve’s Corner: A Brief History of MATLAB
Cleve explains how a simple matrix calculator became the
sophisticated technical computing language it is today.

4

8

12

16

26

32

A Smart Jacket That Could Save
Millions of Children’s Lives

An Imaging Algorithm That Lets You
See Around Corners

Third-Party Products: Extending Simulink for
Complex System Simulation and Integration

MATLAB and Simulink in the World:
Transformative Technology

What Does a Deep Learning
Network See?

11

15

23

24

QUICK READS

Managing Editor
Linda Webb

Editor
Rosemary Oxenford

Graphic Designer
Gabrielle Lydon

Production Editor
Julie Cornell

Technical Writer
Jack Wilber

Printed on 30% post-
consumer waste materials

41

Printer
DS Graphics

Print Liaison
Jill Mespelli

Editorial Board
Thomas Andraczek, Michael Carone,
Ye Cheng, Stacey Gage,
Michelle Hirsch, Maureen Maher,
Andy May, Cleve Moler, Sameer Prabhu,
Richard Rovner, Loren Shure,
John Stewart, Jim Tung

Contributors and Reviewers
R. Agrawal, T. Atkins, A. Balu, P. Barnard,
A. Baru, M. Belge, G. Bourdon, J. Brock,
G. Campa, R. Cherukuri, B. Chou,
M. Corless, K. Deeley, D. Doherty,
O. Dufour, S. Eddins, M. Enelund,
J. Erickson, J. Ghidella, H. Gorr,
C. Grytberg, L. Harvey, L. Heske,
A. Hosagrahara, K. Hyman, N. Ide, W. Jin,
T. Jones, P. Kapur, N. Kehtarnavaz, D. Koh,
S. Kozola, Y. Kurimoto. T. Kush,
R. Lang, T. Lennon, R. Lawrence,
K. Lorenc, P. Massano, A. Matsumoto,
L. McNamara, R. Michaely, A. Mond,
A. Nehemiah, D. Oswill, J. Paloschi,
B. Patel, R. Pillat, P. Pilotte, J. Pingel,
A. Poon, O. Pujado, H. Richardson, J. Rose,
D. Sampson, K. Shibata, S. Tandon,
B. Tannenbaum, A. Taylor, G. Thomas,
T. Tohyama, A. Turevskiy, A. Urbain,
R. van de Pol, T. Varga, V. Veerappan,
S. Velilla, G. Venkataramani,
S. Wilcockson, J. Zhao

Subscribe
mathworks.com/subscribe

Contact Us
mathworks.com/contact

Find Us Online

https://www.mathworks.com/company/newsletters/signup.html
https://www.mathworks.com/company/aboutus/contact_us.html
https://www.facebook.com/MATLAB
http://www.twitter.com/MATLAB
http://www.linkedin.com/company/the-mathworks_2
https://www.instagram.com/mathworks/
https://www.youtube.com/user/MATLAB

SELF-DRIVING TAXI
Developing Longitudinal Control Algorithms to
Maintain Vehicle Stability and Ensure a Smooth Ride

By Alan Mond, Voyage Auto

MathWorks News&Notes 5

At Voyage, we want every passenger to feel
that same level of safety and comfort. As a
small startup competing against many larg-
er organizations working on autonomous
driving technology, we want to iterate as
quickly as possible. One of our team’s goals
is to minimize the time between exploring
ideas on the whiteboard and getting those
ideas onto the road. To achieve that goal,
we focused our efforts, scoping our first taxi
service to operations in small communities
(Figure 1), and refined our design through
multiple iterations. We used Docker contain-
ers to manage system dependencies and the
Robot Operating System (ROS) as the mid-

The very first passenger to ride in one of our
self-driving taxis was a blind woman named Bev. When asked about the
drive, Bev said she felt safe—that the ride felt much smoother than some
vehicles driven by sighted people.

FIGURE 1. A Voyage self-driving taxi on the road at The Villages community in Florida.

dleware for perception, motion planning,
and controls. Instead of manually coding the
model predictive control (MPC) algorithms
for the longitudinal control system, we used
Model-Based Design with MATLAB® and
Simulink®.

Our team of three engineers completed the
initial braking and acceleration control sys-
tem in just two months.

Bounding the Complexity of
the Self-Driving Car

Self-driving cars incorporate multiple com-
plex systems to sense the surrounding

environment, plan a path to a destination,
and control steering and speed (Figure 2).
Compounding the challenge of designing
and implementing these systems are all the
objects and hazards in the environment,
which include intersections, crosswalks,
roundabouts, construction activity, pedestri-
ans, U-turns, one-way streets, animals, and
speed limits, not to mention the unpredict-
able driving patterns of other vehicles.

To simplify the control design challenge,
we decided to deploy our first self-driving
taxis in strategic partner retirement com-
munities. Not only are these communities

6 MathWorks News&Notes

well-mapped and clearly defined, they also
have set speed limits, typically 25 mph
(40 kph).

Jumpstarting Development with
an Adaptive Cruise Control
System Example

First, our team researched ways to safely
implement longitudinal control as rapidly
as possible. We decided to begin with the
MATLAB adaptive cruise control (ACC)
system example . This example includes a
Simulink model that uses MPC to implement
an ACC system capable of maintaining a set
speed or a set distance from a lead vehicle
(Figure 3).

After downloading this model and run-
ning some preliminary simulations in
Simulink, I generated C++ code from the mod-
el for a standalone ROS node with Robotics
System Toolbox™ and Simulink Coder™. All
the software for our self-driving taxi is mod-
ular, and each subsystem—perception, path
planning, and longitudinal control, among
others—runs as a ROS node. Within three

days we were running the generated code for
the ACC in our vehicle.

Creating Our Own Model
Predictive Controller from
the Ground Up

While the ACC Simulink model had poten-
tial, it could not meet all our requirements.
For example, the vehicle was too jerky when
starting and stopping, and we found that
riders are especially sensitive to this type of
motion. (A passenger in our taxi will not
necessarily feel how well the detection and
perception algorithms are working, but they
will immediately feel how well the longitudi-
nal control works.)

We went back to the drawing board and de-
signed a system from the ground up, quite
literally going to a whiteboard and creating
a kinematic model that describes the motion
of the taxi based on first principles. We im-
plemented this kinematic model in Simulink,
using it as a foundation for the controller de-
sign. We then modified the parameters of
the MPC model to meet our requirements

and incorporated additional logic to handle
edge cases and scenarios that the original
MPC model handled suboptimally, such as
stop-and-go driving.

In these early stages of development, we
imported gigabytes of data from rosbag log
files into the MATLAB environment with
Robotics System Toolbox, and filtered out all
ROS topics not relevant to the longitudinal
controller. Once the data was imported, we
could access it like any other MATLAB vari-
able, which made it easy to analyze and work
with.

We simulated the control model in Simulink
to make sure that its output, accelerator pedal
position, and braking pedal position looked
reasonable and that the model behaved as we
expected for our target sets of inputs.

Conducting In-Vehicle Tests

The simulations gave us enough confidence
in our control design to try it out in the car,
with our team as the first passengers. We gen-
erated C++ code from the redesigned control

FIGURE 2. System overview of a Voyage self-driving taxi.

MathWorks News&Notes 7

FIGURE 3. Simulink model of an adaptive cruise control system.

model for a ROS node and deployed the node
to the vehicle within a Docker container.
Docker enabled us to create an image of our
production environment with all the neces-
sary dependencies and then maintain and
replicate that image consistently throughout
development and testing.

During the initial in-vehicle tests, it was im-
mediately apparent that our controller was
too aggressive with acceleration and brak-
ing. Although the graphs we plotted during
simulations showed what looked like smooth
changes in velocity, the actual riding expe-
rience was anything but smooth. This reali-
zation highlighted for us the importance of
quickly going from concept to onroad tests
with Model-Based Design. We simply could
not judge the quality of our design well
enough in the lab; we had to experience it as
our passengers would, in the car.

We completed several design iterations, tun-
ing parameters and constraints, including
limits on acceleration and jerk, as well as
time constants and the rate at which outputs
from the MPC were updated. We set up ROS

parameters in the Simulink model to make it
easier for our colleagues to calibrate param-
eters directly via ROS. They could quickly
update parameter values even if they had no
prior experience with Simulink.

Creating Virtual Vehicles to
Test Braking Scenarios

Because it would be unsafe to test scenarios
in which another vehicle swerves into our
vehicle’s lane, we created a new type of ROS
node to simulate a ghost barrier—essential-
ly, a virtual vehicle that we could position at
various distances from the taxi. We created
this virtual vehicle in Simulink and parame-
terized it so that we could, for example, have
it start at zero velocity and gradually increase
speed. We generated code for the ROS node
with Simulink Coder and then used the node
to test and tune the controller’s braking per-
formance. With this node, which took only a
few hours to develop, we could generate vir-
tual obstacles in front of our taxi to see how
it would respond, and then adjust its perfor-
mance until it stopped safely and smoothly.

On the Road

The longitudinal controller we developed
using Model-Based Design is in operation in
self-driving taxis in the retirement commu-
nities that Voyage serves. We are seeing in-
creased demand, with usage growing by 10%
each week. Our engineering team is learning
from data gathered during these rides, and
we continue to refine the controller by incor-
porating what we learn.

Voyage
voyage.auto

Design an Adaptive Cruise
Control System Using Model
Predictive Control
mathworks.com/adaptive-cruise-
control

LEARN MORE

Lead Car

Host Car

Sensed
Data

Host Car
Adaptive Cruise Control System

Host velocity

Driver-set velocity

Actual Distance

Lead velocity

Acceleration Acceleration

Initial position

Initial velocity

Actual position

Actual velocity

Acceleration

Initial position

Initial velocity

Actual position

Actual velocity

Lead Car

a0_lead

x0_lead

v0_lead

v0_host

x0_host

v_set

https://voyage.auto/
https://www.mathworks.com/help/mpc/examples/design-an-adaptive-cruise-control-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/examples/design-an-adaptive-cruise-control-system-using-model-predictive-control.html

8 MathWorks News&Notes

All undergraduate electrical engineering students
 at the University of Texas at Dallas are required to take a course on signals and
systems. We supplement this third-year course with a one-credit lab that gives
students a chance to implement the concepts they learn in lecture.

For the past several years, I’ve taught 3102 Signals and Systems
Laboratory with an emphasis on hands-on coding. Students complete
assignments on convolution, Fourier series, Fourier transform, and
other key signals and systems concepts by writing short MATLAB®
programs. I recently added a new dimension to the lab: The students
now use MATLAB Coder™ to gen-
erate C code from their MATLAB
programs to enable the creation of
mobile apps that they run on their
Android™ or iPhone devices.

This approach enables students to
complete lab work anytime and
anywhere, and gives them first-
hand experience with hardware
constraints and practical imple-
mentation issues. It also adds in-
terest to the course. In their assessments of the most recent Signals
and Systems Laboratory, students reported that the use of smart-
phones increased their engagement with the material.

Taking Lab Work Out of the Lab

Few universities have a lab associated with signals and systems, and
those that do often involve running MATLAB code on desktop com-
puter platforms. Because of the limitation on the number of computer
platforms in a lab room, lab time is tightly scheduled. Last semes-

ter alone, about 200 third-year electrical and biomedical engineering
students enrolled in 3102 Signals and Systems Laboratory. Even after
creating 10 sections, it is challenging to find lab time and space for
that many students.

However, the processors in the
mobile devices that students bring
to class every day are more than
powerful enough to run signal pro-
cessing algorithms. By creating lab
assignments that use the students’
own devices as the processing
hardware, I have enabled students
to experiment anywhere and at any
time. The school’s Total Academic
Headcount license, which provides
students with campus-wide access

to MATLAB on their own laptops, helped make this possible.

Creating a Framework for Signal
Processing Mobile Apps

Before I could ask students with little programming experience to
create mobile apps, I needed to give them a straightforward way to
translate their MATLAB code into C code. I also needed a framework
that they could use to run the C code on mobile devices.

I met the first requirement with MATLAB Coder, which enables

Creating a Smartphone-Based Signals and
Systems Laboratory for Undergraduate
Engineering Students
By Nasser Kehtarnavaz, University of Texas at Dallas

I wanted to challenge the students with-
out overwhelming them. With students
new to programming, it was important
to keep the focus on applying signals and
systems principles instead of working
through complex programming exercises.

MathWorks News&Notes 9

FIGURE 1. Diagram of programming shells used to run C algorithms on iPhone and Android devices.

WaveReader

User Interface

iPhone Android

UI and I/O
in Objective C

Audio I/O Handler

Processing

UI and I/O
in Java

GUI

PreferencesUI

WaveRecorder WaveSaver

FIRFilter

Main.Storyboard

ViewController

IosAudioController

FIRFilter
Algorithm

Implemented in C

students to generate efficient C code for their smartphones from
MATLAB code that they develop and debug on their laptops. To meet
the second requirement, I developed two programming shells that
students can install on their mobile devices, one for iOS, written in
Objective C, and one for Android, written in Java® (Figure 1).

Introducing MATLAB and Basic Programming

Because few of the students enrolled in Signals and Systems
Laboratory have experience with MATLAB or with computer pro-
gramming, I begin the course with an introduction to programming
principles in MATLAB. The students first learn basic programming
concepts, including arithmetic and vector operations, array indexing,
memory allocation, and control flow. I then cover the more advanced
techniques that they will need to complete their assignments, includ-
ing loading and saving data, reading wave files, and generating sig-
nals.

Over the following two weeks, the students practice generating
C code with MATLAB Coder and compiling apps in the smart-
phone programming environment for their specific device. All the

materials and assignments come from the book written for the lab
course, Anywhere-Anytime Signals and Systems Laboratory: From
MATLAB to Smartphones.

Developing Apps for Convolution, Fourier Series,
and Fourier Transform

The first mobile app that the students develop is for a lab assignment
on solving linear time-invariant (LTI) systems via the convolution
integral. In this assignment, the LTI systems examined are RLC cir-
cuits. The students use MATLAB to perform a numeric approxima-
tion of the convolution integral and find the output voltage or cur-
rent in response to a given input voltage or current. After developing
and testing their solution in MATLAB, the students generate C code
with MATLAB Coder. They then compile this C code along with the
device-specific shells that I provide them to build an app for their
mobile devices (Figure 2).

Next, the students explore Fourier series summation and reconstruc-
tion of periodic signals. They learn that if they know the response
of a linear circuit to one sinusoidal input signal, they can obtain the

10 MathWorks News&Notes

response to any periodic signal by decomposing it into sinusoidal
signals and performing a linear superposition of the sinusoidal sig-
nals. As with the previous assignment, the students first develop an
algorithm that demonstrates this principle in MATLAB and then use
MATLAB Coder to implement that algorithm in C code for a mobile
app (Figure 3).

In the remaining lab assignments, the students use this same process
to build apps that demonstrate their ability to use Fourier transforms
for noise cancellation and amplitude modulation and to perform
analog-to-digital and digital-to-analog conversions via signal sam-
pling, quantization, and reconstruction.

In creating the lab assignments, I wanted to challenge the students
without overwhelming them. With students new to programming,
it was important to keep the focus on applying signals and systems
principles instead of working through complex programming exer-
cises. For example, I allowed them to use the conv() and fft()
functions in MATLAB rather than writing their own convolution and
Fourier transform algorithms.

When I see the flash of recognition cross my students’ faces, I know
that the approach has worked. Some students, for instance, question
why they need to move to the frequency domain with a Fourier trans-
form if they’ve already solved a system with convolution. When they
see the problems they encounter as the frames get longer and longer
and they can no longer use convolution, they see exactly why this is
necessary.

With MATLAB Coder, I can provide hands-on activities that enable
the students to experience and overcome the challenges that come
with implementing actual solutions in the real world. In doing so, I
achieve better outcomes and engagement from the students.

FIGURE 2. Mobile app for lab on linear
time-invariant systems and convolution.

FIGURE 3. Mobile app for the Fourier series lab.

Anywhere-Anytime Signals and Systems Laboratory:
From MATLAB to Smartphones
mathworks.com/signals-systems-lab

Mobile Device Shells and Sample Code
sites.fastspring.com/bookcodes/product/SignalsSystems-
Bookcodes

iPhone and iPad Support from MATLAB Coder
mathworks.com/iphone-matlab

LEARN MORE

https://www.mathworks.com/support/books/anywhere-anytime-signals-and-systems-laboratory-kehtarnavaz.html
http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes
http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes
https://www.mathworks.com/hardware-support/iphone-matlab-coder.html

11 MathWorks News&Notes | 2 0 1 8 – 2 0 1 9

According to the World Health Organization, a child dies from pneumonia every
20 seconds. UNICEF reports that in sub-Saharan Africa, more than 490,000
children under 5 die from the disease each year. Diagnostic equipment
and trained clinicians are scarce in remote areas, so the disease often
goes undiagnosed.

Three engineering graduates from Makere University, Uganda, developed
Mama-Ope (“mother’s hope”), a biomedical smart jacket that can diagnose
pneumonia faster than a doctor. Designed for children under 5, the jacket works
like a wearable stethoscope, using sensors to measure the patient’s temperature,
breathing rate, and wheezing levels. The results are recorded on a mobile app
connected to Mama-Ope via Bluetooth, and sent to a healthcare professional for
further analysis.

The team used MATLAB® signal analysis functions to filter and identify abnormal
patterns in data collected by the device. The MATLAB analysis helped the
team determine crucial parameters, such as the design of the filter and
amplifier circuits.

Once the jacket is certified for clinical use in Uganda, the team intends to
produce and supply it to countries throughout East Africa.

Read the full story
mathworks.com/fighting-childhood-pneumonia

A Smart Jacket
That Could Save
Millions of
Children’s Lives

Image credit: RAEng/Brett Eloff

12 MathWorks News&Notes

As the world’s second largest reinsurer, Swiss Re
must take into account a broad set of risk factors from across the globe. For
the past 10 years, we have calculated risk measures such as value at risk (VaR)
and expected shortfall using the Internal Capital Adequacy Model (ICAM), a
core risk model built with MATLAB®. As we continued to expand ICAM’s
capabilities over the years, however, it became increasingly hard to manage
the complexity. Numerous interdependencies made it difficult to fully
understand how the model worked.

Integrating Risk Analytics and Modeling
in a Production Enterprise Application
By Tamás Varga, Swiss Re

To make ICAM easier to understand, update, and maintain, we com-
pleted a major overhaul. We made the revamped ICAM core avail-
able as a production IT system—the Integrated Risk Analytics and
Modeling Platform (IRAMP)—and sped up risk modeling calcula-
tions by executing them on a computer cluster. MATLAB, MATLAB
Production Server™, and MATLAB Distributed Computing Server™
enabled us to achieve both these objectives without having to develop
custom IT infrastructure.

Applying Object-Oriented Programming
to Improve ICAM Transparency
and Maintainability

ICAM is designed to enable risk reporters to understand the aggre-
gate effect of approximately 300,000 risk factors on the company’s to-
tal economic balance sheet. Categories include interest rates, equity
prices, real estate prices, credit spreads, and claims inflation, as well
as operational risks, natural disasters, and mortality trends. In rewrit-
ing ICAM, we wanted to make it easier for risk reporters to see how

these factors affected risk measures. One of our most effective changes
was to apply more object-oriented programming principles in writing
the MATLAB code. Today’s version of ICAM has more 75,000 lines
of MATLAB code—all under version control—comprising 400 data
classes and 250 classes for risk factors and loss functions. The graphics
and objects classes in our code have enabled us to increase the num-
ber of user interfaces in ICAM and to control them in a maintainable
way (Figure 1).

Building an Enterprise Application
for Risk Analysis

Calculating VaR, expected shortfall, and other risk measures with
a one-year horizon from 300,000 risk factors is a computational-
ly intensive process, involving Monte Carlo simulations in which
1,000,000 realizations are generated for each risk factor. We are using
Statistics and Machine Learning Toolbox™ for regression, generalized
linear models, and data compression and preparation as well as Monte
Carlo simulations with random samples drawn from a variety of dis-
tributions.

MathWorks News&Notes 13

We employed a three-part strategy for building an enterprise IT ap-
plication to manage the lengthy compute times this process requires.
First, we set up a computing cluster to support parallel computa-
tions with Parallel Computing Toolbox™ and MATLAB Distributed
Computing Server. Second, we broke the process down into multiple
distinct workflows, including validation, preprocessing, calculation,
and evaluation. Third, we used MATLAB Production Server to es-
tablish a production IT framework that risk reporters could use to
execute multiple workflows on the computing cluster.

We maintain two environments for developing and maintaining
ICAM, one for production and one for development and training.
The computing cluster in our production environment includes 165
workers. Our development and training environment has a similar
computing cluster with 111 workers (Figure 2). After validating our
ICAM application in the development and training environment, we
prepared it for deployment in the production environment by compil-
ing it into a standalone component using MATLAB Compiler SDK™.

Workers in the cluster are allocated as needed to complete workflows
initiated by risk reporters. Each workflow is initiated from the IRAMP
web interface and orchestrated by MATLAB Production Server. To
begin the process, for example, risk reporters initiate the validate
workflow, which verifies that the input data is internally consistent.
Next, they kick off the preprocessing workflow, which transforms the
raw input data into a format ready for use by the risk model. In the
calculate workflow, all the Monte Carlo simulations are performed.
This workflow requires the largest number of workers and the most
time to complete. The results are stored as a snapshot in a 200 GB file
on a shared file system. In the evaluate workflow, the risk reporters
use a MATLAB application that we created to query results from the
image and perform what-if analyses.

From Desktop to Cluster to Cloud

The overhaul of ICAM and development of IRAMP have been well
received by risk reporters because the system is more transparent
from end to end. While MATLAB provides a powerful and efficient

FIGURE 1. ICAM user interface.

14 MathWorks News&Notes

development environment, by using MATLAB Production Server
and MATLAB Distributed Computing Server for both the develop-
ment and production environments, we ensure consistent results and
increased stability in production.

We are now working with MathWorks engineers to migrate the
IRAMP system to an external cloud-based system such as Microsoft®
Azure®. This will provide for a larger scale and more flexible system,
allowing us to reduce costs by scaling down during periods of low
demand and to reduce wait times by scaling up during periods of
high demand.

MATLAB Production Server for Financial Applications (38:38)
mathworks.com/video-81937

Aberdeen Asset Management Implements Machine Learning–
Based Portfolio Allocation Models in the Cloud
mathworks.com/aberdeen

LEARN MORE

MATLAB PRODUCTION
SERVER

Request
Broker

MATLAB DISTRIBUTED
COMPUTING SERVER

DATA WAREHOUSE
(ORACLE DATABASE)

MATLAB DESKTOP

MATLAB Compiler SDK

MODEL DEVELOPMENT

Development

Production

MATLAB DISTRIBUTED
COMPUTING SERVER

DATA WAREHOUSE
(ORACLE DATABASE)

RISK REPORTING

Risk Reporting Application
(web interface, MSBI, etc.)

FIGURE 2. IRAMP system architecture for development and production environments.

https://www.mathworks.com/videos/matlab-production-server-for-financial-applications-81937.html
https://www.mathworks.com/company/user_stories/aberdeen-asset-management-implements-machine-learning-based-portfolio-allocation-models-in-the-cloud.html

15 MathWorks News&Notes | 2 0 1 8 – 2 0 1 9

Stanford University’s new laser-based imaging technology could take blind
spot detection in cars to a whole new level. Not only can it see things the
driver can’t, it “sees” things that are not even in the line of sight.

The Stanford system can detect objects, in 3D, hidden behind walls and
around corners. It uses a pulse of laser light and a photon detector to
capture light that scatters off a wall and reflects off objects hidden from view.
A photon detector sensitive enough to detect a single photon creates a
“scan” of the reflected light pulses. A computational reconstruction algorithm,
created with MATLAB®, uses information from the scan to infer the 3D
shape of the hidden objects.

Read the full story
blogs.mathworks.com/headlines/2018/03/16/
imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/

See how the system works
computationalimaging.org/publications/confocal-non-line-
of-sight-imaging-based-on-the-light-cone-transform/

An Imaging Algorithm That
Lets You See Around Corners

Image credit: Stanford Computational Imaging Lab

https://blogs.mathworks.com/headlines/2018/03/16/imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/
https://blogs.mathworks.com/headlines/2018/03/16/imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/
http://www.computationalimaging.org/publications/confocal-non-line-of-sight-imaging-based-on-the-light-cone-transform/
http://www.computationalimaging.org/publications/confocal-non-line-of-sight-imaging-based-on-the-light-cone-transform/

NEUTRINOS AT J-PARC
Developing Power Converter Control Software
for the J-PARC Particle Accelerator

By Yoshinori Kurimoto, High Energy Accelerator Research Organization (KEK)

MathWorks News&Notes 17

The T2K experiment is a long baseline
neutrino oscillation experiment in which
neutrinos and antineutrinos produced at the
Japan Proton Accelerator Research Com-
plex (J-PARC) are observed in the Super-
Kamiokande detector located 295 km away.
Finding a difference in oscillations between
neutrinos and antineutrinos would provide
an essential clue about how our universe was
formed. The largest task of the experiment is
the production of numerous neutrinos and
antineutrinos. In the T2K experiment, neu-
trinos are created with the J-PARC proton

R
esults from the T2K experiment suggest
that neutrino oscillations may hold the key to understanding a funda-
mental question about the universe: why it contains vastly more matter
than antimatter when the Big Bang is believed to have produced equal
amounts of both.

accelerator by accelerating protons to near
light speed and smashing them into a target
material. To expand our investigation of neu-
trino oscillations, we need to produce more
neutrinos by increasing the rate at which we
supply protons via the accelerator. Then, once
the proton beams enter the main ring, we
need more powerful electromagnets to con-
trol the beams as they travel around the ring
(Figure 1).

None of the manufacturers we usually
worked with were able to engineer a power

converter that could deliver the power need-
ed for these stronger electromagnets within
our budget. We therefore decided to help the
engineering effort by developing the control
software ourselves.

Neutrino research is an area of intense com-
petition, and we need to keep pace with labs
in the U.S. and Europe that are engaged in
similar research. To speed development and
keep down costs, we developed the power
supply control software using Model-Based
Design with Simulink® and deployed it to

FIGURE 1. Bird’s-eye view of J-PARC showing the main ring and path of proton beams in red.

18 MathWorks News&Notes

an FPGA using HDL Coder™. Model-Based
Design enabled us to develop the control
software at a cost 60% less than the estimates
provided by major manufacturers and to cut
development time by more than 50%.

Our Challenge: Almost Double
the Voltage Supplied to J-PARC
Electromagnets

To appreciate how important a larger pow-
er supply was to our research, it helps to
understand the process for generating and
detecting neutrinos at J-PARC. First, we use
a linear accelerator to accelerate negative
hydrogen ions to about 400 million electron
volts (MeV). With the J-PARC synchrotron,
we convert the ions to protons and acceler-
ate the protons to 1.3 billion electron volts
(GeV) in J-PARC’s small ring, which is about
350 meters in circumference. The protons are
then directed to the main ring (about 1.5km
in circumference), where they are accelerated
to 30 GeV before being targeted to the neu-
trino generation facility. In the final stage,
the neutrinos are observed at the neutrino
observatory located under Mount Ikeno,
295 km away.

In the main ring (Figure 2), bending and
quadrupole electromagnets control the pro-
ton beams’ trajectory by applying precisely
synchronized magnetic fields.

For our upcoming experiments, we need to
supply more protons, which means reduc-
ing the amount of time needed to switch (or
cycle) the electromagnet from 2.48 seconds
to 1.3 seconds. The time required to switch
an electromagnet is inversely proportion-
al to the voltage applied, which means that
we have to almost double the voltage, cor-
responding to the total output power of ap-
proximately 100 MW—more than the elec-
trical grid is capable of providing.

Designing and Implementing
the Power Converter Controller

The converter has two main components:
a three-phase AC-to-DC voltage converter
that is used to charge large capacitors, and a

chopper that supplies power from the capac-
itors to the electromagnet (Figure 3).

One of our goals in designing the power
converter controller was to verify our design
through simulation before performing tests on

actual hardware. We started by creating a plant
model of the power supply’s three-phase AC/
DC converter and chopper using Simulink,
Simscape™, and Simscape Electrical™. We then
created a complete system model of the con-
troller and plant (Figure 4).

FIGURE 2. The J-PARC main ring, showing the bending and quadrupole electromagnets used to
control the proton beam trajectory.

FIGURE 3. Schematic of the new electromagnet power supply unit.

MathWorks News&Notes 19

pabilities of the FPGA made it preferable to
a microcontroller with relatively few inputs
and outputs. One advantage of Model-Based
Design is that, should we choose to redeploy
on a microcontroller in the future, we will
be able to generate C code from our existing
controller design with Embedded Coder®
and be up and running on a new target very
quickly.

After running simulations to verify the de-
sign and tune control parameters, we gen-
erated synthesizable Verilog® code from our
controller model using HDL Coder.

We deployed this code to a device from In-
tel’s Cyclone® FPGA family and tested it us-
ing a smaller version of the production pow-
er supply. We verified that the waveforms
from this setup matched the waveforms
shown in the simulation results, with only
minor deviations.

Finally, we tested and verified the FPGA
controller on the actual power converter
hardware.

We have completed the implementation of
the first power converter unit equipped with
our FPGA-based controller. We are current-
ly building the remaining units needed for
the entire main ring at J-PARC. We expect
to begin neutrino oscillation experiments
with this new setup when construction of
these units is completed.

Power Converters
Modeling Techniques
mathworks.com/power-converter-
modeling

Generating HDL Code for
FPGA and ASIC
mathworks.com/verifying-hdl-code

LEARN MORE

FIGURE 4. Simulink model of the power converter and its controller.

FIGURE 5. Simulink model of controller subsystems.

The controller model includes subsystems
for DC voltage control, active power con-
trol, reactive power control, and pulse-width
modulation, as well as elements for per-
forming the direct-quadrature-zero trans-
formations between three-phase signals and

the direct-quadrature (dq0) reference frame
(Figure 5).

We selected an FPGA for the first version
of our design because we needed to control
multiple modules, and the input/output ca-

https://www.mathworks.com/help/physmod/sps/examples/power-converters-modeling-techniques.html
https://www.mathworks.com/help/physmod/sps/examples/power-converters-modeling-techniques.html
https://www.mathworks.com/products/hdl-coder/features.html#verifying-hdl-code

20 MathWorks News&Notes

Deep learning networks are proving to be versatile tools. Originally intended for
image classification, they are increasingly being applied to a wide variety of other
tasks, as well. They provide accuracy and processing speed—and they enable you
to perform complex analyses of large data sets without being a domain expert. Here
are some examples of tasks for which you might want to consider using a deep
learning network.

Text Analytics

In this example, we’ll analyze twitter data to see whether the senti-
ment surrounding a specific term or phrase is positive or negative.
Sentiment analysis can have many practical applications, such as
branding, political campaigning, and advertising.

Machine learning was (and still is) commonly used for sentiment
analysis. A machine learning model can analyze individual words, but
a deep learning network can be applied to complete sentences, greatly
increasing its accuracy.

The training set consists of thousands of sample tweets categorized as
either positive or negative. Here is a sample training tweet:

We clean the data by removing “stop words” such as “the” and “and,”
which do not help the algorithm to learn. We then upload a long
short-term memory (LSTM) network, a recurrent neural network
(RNN) that can learn dependencies over time.

LSTMs are good for classifying sequence and time-series data. When
analyzing text, an LSTM will take into account not only individual
words but sentence structures and combinations of words, as well.

The MATLAB® code for the network itself is simple:

layers = [sequenceInputLayer(inputSize)

 lstmLayer(outputSize,'OutputMode','last')

 fullyConnectedLayer(numClasses)

 softmaxLayer
 classificationLayer]

When run on a GPU, it trains very quickly, taking just 6 minutes for
30 epochs (complete passes through the data).

Once we’ve trained the model, it can be used on new data. For ex-
ample, we could use it to determine whether there is a correlation
between sentiment scores and stock prices.

Tweet Sentiment
“I LOVE @Health4UandPets u guys r the best!!”	 Positive

“@nicolerichie: your picture is very sweet” Positive

“Back to work!” Negative

“Just had the worst presentation ever!” Negative

Beyond Image Classification:
More Ways to Apply Deep Learning
By Johanna Pingel, MathWorks

MathWorks News&Notes 21

Image Denoising

Wavelets and filters were (and still are) common methods of de-
noising. In this example, we’ll see how a pretrained image denois-
ing CNN (DnCNN) can be applied to a set of images containing
Gaussian noise (Figure 3).

Speech Recognition

In this example, we want to classify speech audio files into their
corresponding classes of words. At first glance, this problem looks
completely different from image classification, but it’s actually very
similar. A spectrogram is a 2D visualization of the signals in a 1D
audio file (Figure 1). We can use it as input to a convolutional neural
network (CNN) just as we would use a “real” image.

The spectrogram() function is a simple way of converting an
audio file into its corresponding time-localized frequency. However,
speech is a specialized form of audio processing, with important fea-
tures localized in specific frequencies. Because we want the CNN to
focus on these locations, we will use Mel-frequency cepstral coeffi-
cients, which are designed to target the areas in frequency in which
speech is most relevant.

We distribute the training data evenly between the classes of words
we want to classify.

To reduce false positives, we include a category for words likely to be
confused with the intended categories. For example, if the intended
word is “on,” then words like “mom,” “dawn,” and “won” are placed in
the “unknown” category. The network does not need to know these
words, just that they are not the words to recognize.

We then define a CNN. Because we are using the spectrogram as an
input, the structure of our CNN can be similar to one we would use
for images.

After the model has been trained, it will classify the input image
(spectrogram) into the appropriate categories (Figure 2). The accura-
cy of the validation set is about 96%. FIGURE 3. Original image with Gaussian noise added.

FIGURE 1. Original audio signals (top) with corresponding
spectrograms.

FIGURE 2. Classification result for the word "yes."

22 MathWorks News&Notes

Let’s zoom in on a few details:
rect = [120 440 130 130];

cropped_orig = imcrop(RGB,rect);

cropped_denoise = imcrop(denoisedRGB,rect);

imshowpair(cropped_orig,cropped_denoise,...
 'montage');

The zoomed-in view in Figure 5 shows that the result of denoising has
left a few side effects—clearly, there is more definition in the original
(non-noisy) image, especially in the roof and the grass. This result
might be acceptable, or the image might need further processing, de-
pending on the application that it will be used for.

If you’re considering using a DnCNN for image denoising, bear in
mind that it can only recognize the type of noise on which it’s been
trained—in this case, Gaussian noise. For more flexibility, you can use
MATLAB and Deep Learning Toolbox™ to train your own network
using predefined layers or to train a fully custom denoising neural
network.

Classify Sequence Data Using LSTM Networks
mathworks.com/classify-sequence-data

Deep Learning Speech Recognition
mathworks.com/speech-recognition

LEARN MORE

We start by downloading an image that has Gaussian noise.

imshow(noisyRGB);

Since this is a color image, and the network was trained on grayscale
images, the only semi-tricky part of this process is to separate the im-
ages into three separate channels: red (R), green (G), and blue (B).

noisyR = noisyRGB(:,:,1);

noisyG = noisyRGB(:,:,2);

noisyB = noisyRGB(:,:,3);

We load the pretrained DnCNN network.

net = denoisingNetwork('dncnn');

We can now use it to remove noise from each color channel.

denoisedR = denoiseImage(noisyR,net);

denoisedG = denoiseImage(noisyG,net);

denoisedB = denoiseImage(noisyB,net);

We recombine the denoised color channels to form the denoised
RGB image.

denoisedRGB = cat(3,denoisedR,denoisedG,...

 denoisedB);

imshow(denoisedRGB)

title('Denoised Image')

A quick visual comparison of the original (non-noisy) image and the
denoised image suggests that the result is reasonable (Figure 4).

FIGURE 4. Left: original (non-noisy) image. Right: denoised image. FIGURE 5. Zoomed-in view.

https://www.mathworks.com/help/nnet/examples/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/nnet/examples/deep-learning-speech-recognition.html

MathWorks News&Notes 23

Aspen Technology:
Aspen Plus Dynamics
Aspen Plus Dynamics is a dynamic simu-
lation tool for improving plant operations
and process design. It enables engineers
to complete process control schemes, de-
sign verification, safety studies, relief value
sizing, and failure analysis. It includes an
extensive library of operation and control
models with support for polymer processes
and batch process optimization. Aspen Plus
Dynamics includes a control design inter-
face for extracting linear state-space models
of nonlinear processes and importing them
into MATLAB® for controller design. Using
the Simulink interface you can connect pro-
cess simulations as a block within a Simulink
model. You can verify controller behavior
by cosimulating Simulink controller models
and nonlinear models of plant processes.
aspentech.com/en/products/engineering/
Aspen-Plus-Dynamics

Cadence Design Systems:
Cadence PSpice Systems Option
The integration of Cadence® PSpice® with
Simulink provides a complete system-level
simulation solution for PCB design and im-
plementation. Designers can use PSpice for
analog or mixed-signal simulation and per-
form Simulink based behavioral-level mod-
eling, analysis, and visualization in a single
system design and debug environment. The
PSpice Systems Option enables cosimulation
of SPICE-level electrical systems and Sim-
ulink based mechanical systems for applica-
tion areas including automotive systems, in-
ternet of things (IoT), and industrial design.
orcad.com/pspice-and-simulink-integration

JSOL: JMAG
JMAG® finite element analysis software is used for developing electromechanical equipment
such as motors, power converters, and actuators. JMAG can simulate magnetic flux density
and electromagnetic forces in permanent magnet, induction, stepper, and a range of other
motors. For motor control development, JMAG-RT extracts motor features as a precise re-
duced-order model provided as a Simulink block. High-fidelity JMAG-RT models capture
device performance, including nonlinear effects, saturation, and space harmonics. By cosim-
ulating control algorithms with accurate motor models, engineers can validate their control
systems before hardware prototypes are available.
jmag-international.com

Mechanical Simulation:
CarSim, TruckSim, BikeSim
The VehicleSim® products provide meth-
ods for simulating vehicle dynamics under
a full range of test and driving conditions
using SIL, HIL, and driving simulators. The
products provide high-fidelity vehicle dy-
namics models, including braking, handling,
ride, stability, and acceleration; portfolios of
example vehicles and test maneuvers; and
plotting and animation capabilities. Core ve-
hicle models can be extended to work with
Simulink models of advanced electronic
controllers or with alternative component
models. You can connect Simulink models
to CarSim vehicle dynamics models through
the S-function plug-in and then cosimulate
and exchange input and output variables be-
tween models.
carsim.com

THIRD-PARTY PRODUCTS

Extending Simulink for Complex System
Simulation and Integration
Simulink® integrates with third-party modeling tools through its open interfaces, enabling engineers to simulate
heterogeneous, multi-domain systems at different fidelity levels. You can connect to over 100 modeling and
simulation tools, serving applications such as electronic circuit board and motor design; mechanical and chemical
modeling; and specialized vehicle design. Simulink provides the S-function API for efficient model and code
integration and simulation and supports standards-based interfaces such as Functional Mock-Up Interface (FMI).

System Modeling and Simulation
mathworks.com/system-design-
simulation	

Third-Party Products and Services
mathworks.com/connections

LEARN MORE

http://www.aspentech.com/en/products/engineering/Aspen-Plus-Dynamics
http://www.aspentech.com/en/products/engineering/Aspen-Plus-Dynamics
http://www.orcad.com/pspice-and-simulink-integration
http://www.jmag-international.com
http://www.carsim.com
https://www.mathworks.com/solutions/system-design-simulation.html
https://www.mathworks.com/solutions/system-design-simulation.html
https://www.mathworks.com/products/connections.html

THE WORLD’S FIRST EYE
SURGERY ROBOT
Surgery performed inside the eye demands almost
superhuman precision and stability. A surgeon at
John Radcliffe Hospital, Oxford, removed a ret-
inal membrane one hundredth of a millimeter
thick using the PRECEYES Surgical System, an
inverted joystick-based device that automatical-
ly moves the tool tip in response to the surgeon’s
movements.

“We wouldn’t dream of fitting a little girl with
the prosthetic limb of a grown man—so why,
then, the same prosthetic voice?”

— Rupal Patel, VocaliD

CROWDSOURCING UNIQUE DIGITAL VOICES
VocaliD is developing the first-ever personalized digital voices, enabling people who rely on synthetic speech for communication to sound like them-
selves. A personalized voice is a blend of the recipient’s vocalization and recordings of a matched speaker from VocaliD’s Human Voicebank, a repos-
itory of 26,000 contributors worldwide. The resulting BeSpoke™ voice can be downloaded for use on text-to-speech devices and applications across all
platforms.

Restoring sight and voice, connecting cities with a hyperloop transportation system,
generating electricity from thin air—engineers at emerging companies are using
MATLAB® and Simulink® to develop pioneering solutions and break boundaries.

MATLAB AND SIMULINK IN THE WORLD

TRANSFORMATIVE TECHNOLOGY

LEARN MORE •	 User Stories
mathworks.com/user-stories

•	 MATLAB and Simulink for Startups
mathworks.com/startups

http://mathworks.com/torino
http://mathworks.com/melbourne
https://www.mathworks.com/company/user_stories.html
https://www.mathworks.com/campaigns/products/startups.html

“There are a lot more runways in the world than
there are launch pads. Our downrange can be
anywhere we point the aircraft.”

— Patrick Harvey, Virgin Orbit

LAUNCHING SATELLITES
AT 35,000 FEET
LauncherOne is Virgin Orbit’s two-stage launch vehi-
cle for delivering small satellites into low earth orbit.
To reduce costs and increase launch location flexibility,
LauncherOne is designed to be air-dropped from a 747-
400 carrier aircraft in flight.

HARNESSING HIGH-ALTITUDE WIND ENERGY
Kitenergy converts high-altitude wind energy into electricity by exploiting the flight of automatically
controlled kites tethered 200–800 meters above the ground. Electricity is generated at ground level by
converting the traction forces acting on the tethers into mechanical and electrical power, using rotating
mechanisms and electrical generators.

“Mobile high-altitude wind energy generators can provide
cheap renewable energy to everyone who needs it.”

— Mario Milanese, Kitenergy

“Imagine a world where distance just doesn’t matter
anymore—a system that’s faster than airplanes, more
convenient than trains, and the best alternative for the
environment. That’s the world we’re making into a
reality, and it’s called the hyperloop.”

— Mars Geuze, Hardt

FROM CITY TO CITY
AT THE SPEED OF SOUND
Hardt Hyperloop is developing the first high-speed hyperloop test facility in the
world in the Dutch province of Flevoland. The hyperloop consists of small, light-
weight vehicles travelling through a tube with virtually no air resistance, allowing
them to travel over huge distances very fast, with minimal energy consumption.

http://mathworks.com/torino

IN THE FRONT SEAT
Putting Student Engineers in the Front Seat with a
Driver-in-the-Loop Automotive Simulator

By Håkan Richardson and Mikael Enelund, Chalmers University of Technology

MathWorks News&Notes 27

Hands-on projects with MATLAB® and
Simulink® are fundamental to our CDIO-
based curriculum because they let students see
the effects of their design decisions firsthand.

Two years ago, we saw an opportunity to en-
able students not just to see the results of their
work but to feel them, as well. We installed
a driver-in-the-loop automotive simulator
that moves a student through six degrees-of-
freedom as they drive. The simulator is main-
tained, operated, and continuously improved
by Caster, a Chalmers student organization
that also helped secure the funds to pur-
chase it. The simulator includes MATLAB
and Simulink vehicle models. It has an in-
terface that enables students to incorporate
their own models and feel how their designs
would perform on a real vehicle.

The mechanical engineering program has in-
tegrated the Caster simulator into a first-year
undergraduate programming course and a
masters-level course in vehicle dynamics.
More importantly, the facility that houses the
simulator has emerged as a gathering place
for students interested in learning more
about automotive engineering outside a spe-
cific course (Figure 1). FIGURE 1. The Caster lounge, which houses the simulator as well as workstations

and places for students to socialize.

T
he Conceive, Design, Implement, Operate
 (CDIO) approach to engineering education that we use at Chalmers
was designed to address the industry demand for graduates who are
both well-grounded in engineering principles and equipped to tackle
real-world engineering problems.

28 MathWorks News&Notes

Teaching First-Year Programming
With the Simulator

MATLAB is an essential component of the
engineering curriculum at Chalmers, and we
require all undergraduates to take Program-
ming with MATLAB in their first year.

To provide students with a positive introduc-
tion to programming, we incorporated the
Caster simulator into the first course assign-
ment. The students were asked to write an
algorithm in MATLAB that set the appropri-
ate gear based on parameters such as engine
speed (in rpm) and vehicle speed. During

simulations, the Castor simulator’s MATLAB
model transmitted these parameters in real
time as a stream of telemetry data.

The students’ algorithms were tested in a
drag race with a simulated Camaro SS. The
students with the fastest times in an initial
round of desktop simulations advanced to
the finals, in which they sat in the Caster sim-
ulator as the simulated Camaro raced down
the drag strip (Figure 2).

Developing a shifting algorithm from scratch
is daunting for students new to program-
ming, so we provided a rudimentary algo-
rithm that simply shifted from first to fourth
gear when the vehicle reached 20 km/h. We
also gave them the vehicle’s engine torque
curve, gear ratios, and tire slip ratio, and
delivered a short lecture on how engineers
use this data to develop optimal shifting al-
gorithms.

We expected most students to develop a
straightforward implementation that simply
shifted gears progressively as the car reached
certain speeds. We thought maybe a handful
would use the additional torque and gear
ratio information in a more sophisticated
algorithm. We were astonished when dozens
of students began showing up at the Caster
facility after school hours to ask us how they
could improve their MATLAB algorithms
and develop more advanced solutions. The
enthusiasm generated by this project carried
through the remainder of the course.

Teaching Masters-Level
Vehicle Dynamics

Use of the Caster simulator in coursework
is steadily expanding. At the undergraduate
level, we plan to employ the simulator in a
second-year machine design course in which
mechanical engineering students will design
a vehicle braking system in MATLAB and
then run simulations to evaluate their sys-
tems’ performance.

At the graduate level, we have already in-
corporated the simulator into a course on

FIGURE 2. A student experiencing the effects of his MATLAB code in a drag race in the
Caster simulator.

FIGURE 3. A graduate student running a vehicle dynamics model simulation.

MathWorks News&Notes 29

vehicle dynamics. In this course, students
develop their own vehicle models. Working
in Simulink with a framework model we pro-
vide, the students add the necessary equa-
tions of motion to accurately capture vehicle
dynamics (Figure 3).

After running offline simulations in
Simulink, the students plug their models
into the Caster simulator and evaluate their
performance on a test track with a skid pad
and an acceleration straight. We then ask the
students to model three different weight dis-
tributions between the front and rear axles.
They sit in the Caster simulator so that they
can feel how the car reacts to each weight dis-
tribution.

Next, they run a similar set of simulations
while modifying the brake balance between
the front and rear axles. In the simulator they
experience the effects of front brake and rear
brake locking. For an automotive engineer,
experiencing the motion in the simulator
firsthand—rather than just seeing data plot-
ted in a graph—provides a vivid memory and
a much deeper understanding of the effects
of design parameters on steering, braking,
and overall vehicle dynamics.

Like their undergraduate counterparts in the
introductory programming course, the grad-
uate students were enthusiastic about their
experience with the Caster simulator. In fact,

after our first use of the simulator in the ve-
hicle dynamics course, student enrollment
in the follow-on course, Advanced Vehicle
Dynamics, doubled.

Putting Engineers in
the Front Seat

Caster’s motto, “Engineers in the Front Seat,”
in many ways reflects the culture of contin-
uous improvement at Chalmers. We want to
remain at the forefront of engineering edu-
cation, and are always looking for ways to
improve our programs with new courses and
assignments.

Caster simulator technology has already
played a significant role in enhancing our
curriculum, but the Caster student organiza-
tion has had an even more dramatic effect.
We have hosted visitors from about 20 differ-
ent universities who have expressed interest
in setting up a similar program.

Caster has also helped Chalmers’ recruit-
ment efforts. When secondary school stu-
dents visit our campus, we show them the
simulator. We’ve seen interest among sec-
ondary school visitors; even if they are not
particularly attracted to automotive technol-
ogy, they still find the coding, virtual reali-
ty, and product development aspects of the
program appealing.

MATLAB and Simulink at Chalmers

The CDIO approach to engineering education relies heavily on modeling and simulation, and at Chalmers we use MATLAB and
Simulink for these activities. As a result, for our engineering students, MATLAB is as widely used as pen and paper. MATLAB and
Simulink are integrated deeply into the mathematics and engineering curriculum at Chalmers. This integration has been enabled by
a Total Academic Headcount license, which provides Chalmers students with campus-wide access to the tools.

Our adoption of the CDIO approach with MATLAB and Simulink has led to improved learning outcomes and contributed to a wider
recognition of Chalmers as a top-ranked technical university. Our mechanical engineering program was awarded Centre of Excel-
lence status by the National Swedish Agency for Higher Education and Best Engineering Education by the Swedish engineering
employers’ organization. After a recent evaluation of higher education, the Swedish government awarded Chalmers’ Mechanical
Engineering program the highest distinction, an honor that came with additional financial support that helped fund the
Caster program.

Lastly, we have seen a very positive response
from industry, including leading automotive
manufacturers in Sweden. Many company
representatives have spent time in the Caster
lounge area talking with students about
their work with the simulator. We are seeing
tremendous interest in the engineers that
Chalmers is producing because our gradu-
ates have not only the skills companies are
looking for but a deeper understanding of
engineering principles founded in their ex-
perience with CDIO principles and hands-on
technology, including the Caster simulator.
Some of the students involved with Caster
have already gone on to work for automotive
companies, and one recently started working
as a game developer for a company that pro-
duces racing video games.

The Caster Simulator (0:30)
youtube.com/watch?v=rYuMF_aZhq8

Modeling a Vehicle Dynamics System
mathworks.com/vehicle-dynamics-
example

Chalmers University of Technology
Integrates MATLAB Throughout Core
Mathematics Curriculum
mathworks.com/chalmers

LEARN MORE

https://www.youtube.com/watch?v=rYuMF_aZhq8
https://www.mathworks.com/help/ident/examples/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/help/ident/examples/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/company/user_stories/chalmers-university-of-technology-integrates-matlab-throughout-core-mathematics-curriculum.html

30 MathWorks News&Notes

An RUL estimation model not only predicts RUL but also provides a
confidence bound on the prediction. The model inputs are condition
indicators, features extracted from sensor data or log data whose be-
havior changes in a predictable way as the system degrades or oper-
ates in different modes.

The method used to calculate RUL depends on the kind of data
available:

•	 Lifetime data indicating how long it took for similar machines to
reach failure

•	 Run-to-failure histories of machines similar to the one you want
to diagnose

•	 A known threshold value of a condition indicator that detects
failure

Predictive Maintenance Toolbox™ provides models for estimating
RUL from each type of data.

Lifetime Data

Proportional hazard models and probability distributions of compo-
nent failure times are used to estimate RUL from lifetime data. A simple
example is estimating the discharge time of a battery based on past dis-
charge times and covariates, variables such as the environment in which
the battery operated (such as temperature) and the load placed on it.

FIGURE 1. Survival function plot. At the end of 75 cycles, the
probability of a battery’s continuing to operate is 0.1, or 10%.

The survival function plot in Figure 1 shows the probability that a
battery will fail based on how long it has been in operation. The plot
shows, for example, that if the battery is in operation for 75 cycles, it
has a 90% chance of being at the end of its life time.

Three Ways to Estimate Remaining Useful
Life for Predictive Maintenance
By Aditya Baru, MathWorks

Remaining useful life (RUL) is the length of time a machine is likely to operate before
it requires repair or replacement. By taking RUL into account, engineers can schedule
maintenance, optimize operating efficiency, and avoid unplanned downtime. For this
reason, estimating RUL is a top priority in predictive maintenance programs.

MathWorks News&Notes 31

Run-to-Failure Data

If you have run-to-failure data from similar components or different
components showing similar behavior, you can estimate RUL using
similarity methods. These methods capture degradation profiles and
compare them with new data coming in from the machine to deter-
mine which profile the data matches most closely.

In Figure 2, the degradation profiles of historical run-to-failure data
sets from an engine are shown in blue and the current data from the
engine is shown in red. Based on the profile the engine most closely
matches, the RUL is estimated to be around 65 cycles.

Threshold Data

In many cases, run-to-failure data or lifetime data was not record-
ed but you do have information on prescribed threshold values—for
example, the temperature of a liquid in a pump cannot exceed 160oF
(71oC) and the pressure must be under 2200 psi (155 bar). With this
kind of information, you can fit time series models to condition indi-
cators extracted from sensor data such as temperature and pressure,
which rise or fall over time.

These degradation models estimate RUL by predicting when the con-
dition indicator will cross the threshold. They can also be used with
a fused condition indicator that incorporates information from more
than one condition indicator using techniques such as principal com-
ponent analysis.

FIGURE 2. Degradation profiles (blue) based on run-to-failure data.
The distribution of the stars (or endpoints) of the nearest blue curves
gives an RUL of 65 cycles.

FIGURE 3. Degradation model for a high-speed bearing. The bearing
has an estimated RUL of 9.5 days based on its current condition data
(blue) and the exponential degradation model (red) fit to this data.

Estimating RUL Using Run-to-Failure Data from an Engine
mathworks.com/similarity-based-example

Estimating RUL of a Battery Using Physical Modeling
and Kalman Filters
mathworks.com/degrading-battery-example

Estimating RUL of High-Speed Bearings Using
Exponential Degradation Models
mathworks.com/bearing-example

LEARN MORE

Figure 3 shows an exponential degradation model that tracks failure
in a high-speed bearing used in a wind turbine. The condition indica-
tor is shown in blue. The degradation model predicts that the bearing
will cross the threshold value in approximately 9.5 days. The region
shaded in red represents the confidence bounds for this prediction.

Once you have reliable estimates for RUL, you can integrate them into
dashboards used by operators or incorporate them into alarm systems
monitored by maintenance teams. Teams can then respond to chang-
es in equipment health as quickly as possible, and without affecting
operations.

https://www.mathworks.com/help/predmaint/examples/similarity-based-remaining-useful-life-estimation.html
https://www.mathworks.com/help/predmaint/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/predmaint/examples/wind-turbine-high-speed-bearing-prognosis.html

32 MathWorks News&Notes

Mathematical Origins

The mathematical basis for the first version of MATLAB was a series of
research papers by J. H. Wilkinson and 18 of his colleagues, published
between 1965 and 1970 and later collected in Handbook for Automatic
Computation, Volume II, Linear Algebra, edited by Wilkinson and
C. Reinsch. These papers present algorithms, implemented in Algol 60, for
solving matrix linear equation and eigenvalue problems.

EISPACK and LINPACK

In 1970, a group of researchers at Argonne National Laboratory proposed
to the U.S. National Science Foundation (NSF) to “explore the method-
ology, costs, and resources required to produce, test, and disseminate
high-quality mathematical software and to test, certify, disseminate, and
support packages of mathematical software in certain problem areas.” The
group developed EISPACK (Matrix Eigensystem Package) by translating
the Algol procedures for eigenvalue problems in the handbook into For-
tran and working extensively on testing and portability. The first version
of EISPACK was released in 1971 and the second in 1976.

In 1975, four of us—Jack Dongarra, Pete Stewart, Jim Bunch, and myself—
proposed to the NSF another research project that would investigate meth-
ods for the development of mathematical software. A byproduct would be
the software itself, dubbed LINPACK, for Linear Equation Package. This
project was also centered at Argonne.

LINPACK originated in Fortran; it did not involve translation from Algol.
The package contained 44 subroutines in each of four numeric precisions.

In a sense, the LINPACK and EISPACK projects were failures. We had
proposed research projects to the NSF to “explore the methodology, costs,
and resources required to produce, test, and disseminate high-quality
mathematical software.” We never wrote a report or paper addressing
those objectives. We only produced software.

Historic MATLAB

In the 1970s and early 1980s, I was teaching Linear Algebra and Numer-
ical Analysis at the University of New Mexico and wanted my students
to have easy access to LINPACK and EISPACK without writing Fortran
programs. By “easy access,” I meant not going through the remote batch
processing and the repeated edit-compile-link-load-execute process that
was ordinarily required on the campus central mainframe computer.

So, I studied Niklaus Wirth’s book Algorithms + Data Structures = Programs
and learned how to parse programming languages. I wrote the first
MATLAB—an acronym for Matrix Laboratory—in Fortran, with matrix
as the only data type. The project was a kind of hobby, a new aspect of
programming for me to learn and something for my students to use. There
was never any formal outside support, and certainly no business plan.

This first MATLAB was just an interactive matrix calculator. This snapshot
of the start-up screen shows all the reserved words and functions. There
are only 71. To add another function, you had to get the source code from
me, write a Fortran subroutine, add your function name to the parse table,
and recompile MATLAB.

CLEVE’S CORNER

A Brief History of MATLAB
By Cleve Moler, MathWorks

The first MATLAB® was not a programming language; it was a simple interactive matrix
calculator. There were no programs, no toolboxes, no graphics. And no ODEs or FFTs.
In this Cleve’s Corner, I’ll describe some milestones in the evolution of MATLAB from those
simple beginnings.

MathWorks News&Notes 33

Commercial MATLAB

I spent the 1979–80 academic year at Stanford, where I taught the gradu-
ate course in Numerical Analysis and introduced the class to this matrix
calculator. Some of the students were studying subjects like control theory
and signal processing, which I knew nothing about. Matrices were central
to the mathematics in these subjects, though, and MATLAB was immedi-
ately useful to the students.

Jack Little had been in the graduate
engineering program at Stanford. A
friend of his who took my course
showed him MATLAB, and he ad-
opted it for his own work.

In 1983, Little suggested the creation
of a commercial product based on
MATLAB. The IBM® PC had been
introduced only two years earlier. It
was barely powerful enough to run
a program like MATLAB, but Little
anticipated its evolution. He left his

job, bought a Compaq® PC clone at Sears, moved into the hills behind
Stanford, and with my encouragement, wrote a new and extended version
of MATLAB in C. A friend, Steve Bangert, worked on the new MATLAB
in his spare time.

PC-MATLAB made its debut in December 1984 at the IEEE Conference
on Decision and Control in Las Vegas. Pro-MATLAB, for Unix work
stations, followed a year later.

Little and Bangert made many important modifications and improve-
ments to Historic MATLAB when they created the new and extended ver-

sion. The most significant were functions, toolboxes, and graphics.

Modern MATLAB

While preserving its roots in matrix mathematics, MATLAB has contin-
ued to evolve to meet the changing needs of engineers and scientists. The
key developments are shown in the timeline. Here, I’ll elaborate on some
of them.

ODEs

The numerical solution of ordinary differential equations has been a vi-
tal part of MATLAB since its commercial beginning. ODEs are also the
core of Simulink®, the MATLAB companion product for simulation and
Model-Based Design.

The Van der Pol oscillator is a classical ODE example.

The parameter μ is the strength of the nonlinear damping term.
When μ = 0, we have the basic harmonic oscillator.

The MATLAB code expresses the oscillator as a pair of first-order
equations.

mu = 5;

vdp = @(t,y) [y(2); mu*(1-y(1)^2)*y(2)-y(1)];

tspan = [0 30];

y0 = [0 0.01]';

[t,y] = ode23s(vdp,tspan,y0);

plot(t,y,'.-')

legend({'y','dy/dt'})

xlabel('t')

1984
PC-MATLAB
FFT
Graphics

1985
Pro-MATLAB
Control System Toolbox™

1987
Signal Processing Toolbox™
ODEs

1992
Sparse matrices
Simulink™

34 MathWorks News&Notes

The Van der Pol oscillator, with the parameter μ set to 5, is a mildly stiff
differential equation. In anticipation, I used the ode23s solver; the ‘s’ in
the name indicates that it is for stiff equations. In the plot you can see some
clustering of steps where the solution is varying rapidly. A nonstiff solv-
er would have taken many more steps. A stiff ode solver uses an implicit
method requiring the solution of a set of simultaneous linear equations at
each step. The iconic MATLAB backslash operator is quietly at work here.

Data Types

For many years, MATLAB had only one numeric data type: IEEE standard
754 double-precision floating point, stored in the 64-bit format. As people
began to use MATLAB for more applications and larger data sets, we pro-
vided more ways to represent data.

Single Precision and Integer

Support for single-precision arithmetic began in the early 2000s and was
complete by MATLAB 7 in 2004. Requiring only 32 bits of storage, single
precision cuts memory requirements for large arrays in half. MATLAB
does not have declarations, so single-precision variables are obtained by
executable conversion functions.

MATLAB 7 also introduced three unsigned integer data types, uint8,
uint16, and uint32; three signed integer data types, int8, int16,
and int32; and one logical data type, logical.

Sparse Matrices

Sparse matrices were introduced with MATLAB 4 in 1992. They are a
memory-efficient way to represent very large arrays that have few non
zero values. Only the nonzero elements are stored, along with row indices
and pointers to the starts of columns. The only change to the outward ap-
pearance of MATLAB is a pair of functions, sparse and full. Nearly
all the operations apply equally to full and sparse matrices. The sparse
storage scheme represents a matrix in space proportional to the number
of nonzero entries, and most of the operations compute sparse results in
time proportional to the number of arithmetic operations on nonzeros.

Cell Arrays

Cell arrays were introduced with MATLAB 5 in 1996. A cell array is an in-
dexed, possibly heterogeneous collection of MATLAB objects, including
other cell arrays. Cell arrays are created by curly braces, {}.

Cell arrays can be indexed by both curly braces and smooth parenthe-
ses. With braces, c{k} is the contents of the k-th cell. With parenthe-
ses, c(k)is another cell array containing the specified cells. Think of a

collection of mailboxes. box(k)is the k-th mailbox. box{k} is the
mail in the k-th box.

Structures

Structures and associated “dot notation” were introduced in 1996. This
script for creating a grade book for a small class shows structures and dot
notation at work.

 Math101.name = ["Alice Jones"; ...

 "Bob Smith"; "Charlie Brown"];

 Math101.grade = ["A"; "B+"; "C"];

 Math101.year = [4; 2; 3];

To call the roll, we need the list of names.

 disp(Math101.name)

 "Alice Jones"

 "Bob Smith"
 "Charlie Brown"

Changing Charlie’s grade involves both structure and array notation.
 Math101.grade(3) = "W";

 disp(Math101.grade)

 "A"

 "B+"
 "W"

Objects

Major enhancements to MATLAB object-oriented programming capabil-
ities were made in 2008. Creating classes can simplify programming tasks
that involve specialized data structures or large numbers of functions that
interact with particular kinds of data. MATLAB classes support function
and operator overloading, controlled access to properties and methods,
reference and value semantics, and events and listeners.

The MATLAB graphics system is one large, complex example of the
object-oriented approach to MATLAB programming.

Making MATLAB More Accessible:
Desktop and Live Editor

The first versions of MATLAB were simple terminal applications. Over
time we added separate windows for graphics, editing, and other tools.
These gradually made MATLAB easier to use, especially for users without
prior programming experience. Two specific features that have had the

biggest impact are the desktop and the Live Editor.

1996
Single precision
Cell arrays
Structures

1999
Objects

2000
Desktop
LAPACK

2004
Integer data
Function handles
Parallel computing

1993
Image Processing Toolbox™
Symbolic Math Toolbox™

MathWorks News&Notes 35

Desktop

The MATLAB desktop was introduced in 2000. Here is a screenshot
showing how it looks today.

Four panels are visible: the current folder viewer (left), the workspace
viewer (right), the editor/debugger (top center), and the traditional com-
mand window (bottom center). A file viewer and a command history win-
dow can also be included in personalized layouts.

Any panel can be closed or undocked into a standalone window.

Live Editor

The Live Editor was introduced in 2016 and is still evolving rapidly.
Descriptive text and MATLAB input, output, and graphics are combined
in a single interactive document that can be exported to HTML, PDF

or LaTeX.

Parallel Computing

Parallel Computing Toolbox™ was introduced at the SuperComputing
conference in 2004. The following year, at SC05, Bill Gates gave the key-
note talk, using MATLAB to demonstrate Microsoft’s entry into high-
performance computing.

The toolbox supports coarse-grained, distributed memory parallelism by
running many MATLAB workers on several machines in a cluster or on
many cores in a single machine. MPI is used for the underlying message
passing. By far the most popular feature of the toolbox is the parallel for
loop command, parfor.

The toolbox also supports fine-grained, shared memory parallelism in
attached graphics processing units (GPUs). Here, the gpuArray array
gets things started.

Toolboxes

Much of the power of modern MATLAB derives from the toolboxes avail-
able for specialized applications. As of release 2018a, there are 63 of them.

What’s Next?

MATLAB has come a long way since the simple calculator that started it
all. It is a living ecosystem supporting all aspects of technical computing.
We will continue to strengthen existing features as we carefully add new
ones. Our goals are always ease of use, power, and speed.

Cleve’s Corner Blog
blogs.mathworks.com/cleve

Cleve’s Corner Collection
mathworks.com/cleves-corner

LEARN MORE

2008
Objects improved

2010
GPUs

2014
New graphics system

2016
Live Editor

2017
Tall arrays and
categorical arrays

https://blogs.mathworks.com/cleve/
https://www.mathworks.com/company/newsletters/clevescorner.html

36 MathWorks News&Notes

Thanks to low-cost hardware platforms such as Raspberry Pi™, it is now easier than
ever to prototype image processing algorithms on hardware. Most image processing
algorithms are computationally intensive, and it can be challenging to run them on an
embedded platform with acceptable frame rates. While Raspberry Pi is sufficient for
running simple image processing algorithms, large images and complex algorithms
are best run on more powerful hardware such as NVIDIA® Jetson.

Run MATLAB Image Processing Algorithms
on Raspberry Pi and NVIDIA Jetson
By Jim Brock and Murat Belge, MathWorks

Using a chroma key effect as an example, this article describes a sim-
ple workflow for deploying a MATLAB® image processing algorithm
to embedded hardware. We’ll generate C code from the algorithm
with MATLAB Coder™, and then use the Run on Hardware utility to
prototype the algorithm on a Raspberry Pi board. Finally, we’ll move
the algorithm to an NVIDIA Jetson Tx1 platform to achieve real-time
performance.

The Chroma Keying Algorithm

Widely used in TV weather reports, movie production, and photo ed-
iting applications, chroma keying is a video processing technique in
which a foreground subject is shot against a solid color background,
such as a green screen, that is later replaced by a different scene
(Figure 1).

The chroma keying algorithm compares each pixel in the image with
a reference color representing the solid background color. If the color
of the pixel is close enough to the reference color, the pixel is replaced
with the corresponding pixel from a pre-selected scene image. Math-
ematically, the chroma keying algorithm can be formulated as:

Where Pfinal(j,k) represents the final pixel value at location (j,k) after
chroma keying, Poriginal(j,k) is the pixel value corresponding to the
original image, Pscene(j,k) is the pixel value representing the scene that
replaces the solid background color, and m(j,k)∈[0,1] is a mask value.
The mask value m(j,k) should be 1 for foreground pixels and 0 for
background pixels. A mask value between 0 and 1 provides a smooth
transition from background to foreground.

The mask value at each pixel is usually computed in the YCbCr color
space instead of the usual RGB color space. The Y component of the
YCbCr image represents the luminance component and determines
how light or dark the image is. Cb and Cr components represent the
chroma components that can be used to measure similarity to a refer-
ence color. Measuring color similarity using only the Cb and Cr com-
ponents of the image makes the algorithm robust to variations in lu-
minance values in light and dark areas of the solid background color.

To measure the similarity of a pixel color to a reference color, we use
the squared Euclidian distance in chroma space:

MathWorks News&Notes 37

Finally, we compute the mask value at location (j,k) in the image using
the following formula:

Where t1 and t2 with t2>t1 represent threshold values to be determined.

MATLAB Implementation

Code excerpts begin on page 39.

Code Except 1 shows the MATLAB implementation of the chroma
keying algorithm.

In MATLAB, images are represented as [N, M, 3] arrays of type uint8.
This means that we’ll need to convert the image data type to 'double'
before performing mathematical operations. To avoid abrupt transi-
tions from background to foreground, we apply a Gaussian filter to
the computed mask.

Determining Reference Color and Thresholds

A chroma keying algorithm requires a reference color and thresh-
olds. Using the camera interface in MATLAB Support Package for
Raspberry Pi, we capture images of the actual scene. We can then
empirically determine the approximate reference color for the back-
ground and the approximate threshold values (Code Excerpt 2).

The img = snapshot(cam); command plots the image captured
from Raspberry Pi camera in MATLAB. We use the Data Cursor tool
in the MATLAB plot to specify the background color (Figure 2).

To determine the thresholds, we run the algorithm in a loop and ad-
just the threshold values (Code Excerpt 3).

When we run the code we get an image shown against the back-
ground we selected (Figure 3).

FIGURE 1. Before-and-after example of chroma keying.

FIGURE 2. The MATLAB Data Cursor tool, used to determine
background color values.

38 MathWorks News&Notes

FIGURE 3. Top: original image. Bottom: image
obtained after running the chroma keying algorithm.

Deploying the Chroma Keying Algorithm
to Raspberry Pi

Before deploying the code, we need to write a loop around the chro-
ma keying algorithm to capture images from a camera and display
them on a monitor attached to Raspberry Pi (Code Excerpt 4).

matlab.raspi.webcam and matlab.raspi.	
SDLVideoDisplay are System objects™ in the Run on Hardware
utility that facilitate use of camera and Raspberry Pi display in a de-
ployment workflow. To compile and run the code, we execute the
command shown in Code Excerpt 5.

The function runOnHardware creates a MATLAB Coder con-
figuration for Raspberry Pi hardware, generates code for the
chromaKeyApp.m script, and deploys it. In order to run the al-
gorithm at a reasonable frame rate, the image size can be reduced to
640x480 or 320x240.

Generating GPU Code

The algorithm is working on the Raspberry Pi, but it is not achiev-
ing the real-time performance we’re looking for. To accelerate the
algorithm, we will use GPU Coder™ to deploy it to the NVIDIA
Jetson platform. We need to generate GPU code to take advantage of

the inherent parallelism in the algorithm. First, we write a wrapper
main function that uses OpenCV to access a USB camera connected
to the NVIDIA Jetson. This function will marshal video frames from
the camera to our chromaKey algorithm and then display the out-
put on the screen.

When generating GPU code, we first create a GPU Coder configura-
tion object, set the GPU parameters to target the NVIDIA Jetson plat-
form, and include our custom main function. We will not compile
the code on the MATLAB host computer, because we are generating
code specifically for the NVIDIA Jetson board. We will create a script
to set up the GPU Coder configuration, input example data, and gen-
erate source code for our application (Code Excerpt 6).

We then run the script in MATLAB to generate CUDA code for the
chromaKey algorithm.

Deploying a Green Screen Algorithm
to NVIDIA Jetson

To deploy the generated code to the NVIDIA Jetson, we need to
package all the required files into the codegen directory, with the
MATLAB commands shown in Code Excerpt 7.

The next step is to copy the entire generated codegen folder from
the host machine to the NVIDIA Jetson board. After the files have
been transferred, we log in to the NVIDIA Jetson directly to build and
run the application.

Once logged in to the NVIDIA Jetson, we run the 	
jetson_clocks.sh script provided by NVIDIA to maximize the
performance of the board, change to the codegen directory con-
taining the generated source code we just transferred, and execute the
compile command shown in Code Excerpt 8.

Once the executable (chromaKey) has been built, the application is
run with a USB-connected webcam on the NVIDIA Jetson board with
the command shown in Code Except 8. The frames-per-second rate
will be displayed on the output.

Figure 4 shows the output from the NVIDIA Jetson board’s USB cam-
era before and after the green screen effect.

Comparing Raspberry Pi and NVIDIA Jetson
Performance

The greater parallel processing power of the GPU on the NVIDIA
Jetson significantly improves the algorithm’s performance. The
Raspberry Pi achieved approximately 1 frame per second, while the
NVIDIA Jetson achieved more than 20 frames per second for an
image size of 1280x720—we gained a more than 20-fold speedup
without making any modifications or optimizations to our algo-
rithm. We could improve performance even more by optimizing the
MATLAB algorithm for more efficient GPU code generation.

MathWorks News&Notes 39

function Pfinal = chromaKey(P, Pscene, refColorYCbCr, t1, t2)

Cbref = double(refColorYCbCr(1,1,2));

Crref = double(refColorYCbCr(1,1,3));

PYCbCr = rgb2ycbcr(P);

Cb = double(PYCbCr(:,:,2));

Cr = double(PYCbCr(:,:,3));

d = (Cb - Cbref).̂ 2 + (Cr - Crref).̂ 2;

t1 = t1̂ 2;

t2 = t2^2;

m = zeros([size(d,1) size(d,2)]);

for j = 1:size(m,1)

 for k = 1:size(m,2)

 if d(j,k) > t2

 m(j,k) = 1;

 elseif d(j,k) > t1

 m(j,k) = (d(j,k) - t1) / (t2 - t1);

 end

 end

end

m = repmat(imgaussfilt(m,0.8), [1 1 3]);

Pfinal = uint8(double(P).*m + double(Pscene).*(1-m));

end

CODE EXCERPT 1

r = raspi;

cam = cameraboard;

for k = 1:10

 img = snapshot(cam);

end

CODE EXCERPT 2

Summary

In this example we saw how to rapidly generate code for a MATLAB
algorithm and deploy it to embedded hardware like the Raspberry
Pi. We quickly determined that our algorithm was working correct-
ly and needed to be parallelized. Using MATLAB and GPU Coder,
we generated a highly parallel implementation of the algorithm and
deployed it to an NVIDIA Jetson board, achieving a significant per-
formance improvement.

Raspberry Pi Programming with MATLAB and Simulink
mathworks.com/raspberry-pi-programming

NVIDIA GPU Support from GPU Coder
mathworks.com/nvidia-gpu

LEARN MORE

FIGURE 4. Before-and-after example of applying the
green screen effect.

MathWorks News&Notes 39

https://www.mathworks.com/discovery/raspberry-pi-programming-matlab-simulink.html
https://www.mathworks.com/hardware-support/nvidia-gpu.html

40 MathWorks News&Notes40 MathWorks News&Notes

function chromaKeyApp()

 %Chroma keying example for Raspberry Pi hardware.

 w = matlab.raspi.webcam(0,[1280,720]);

 d = matlab.raspi.SDLVideoDisplay;

 refColorYCbCr = zeros([1,1,3],'uint8');

 refColorYCbCr(1,1,:) = uint8([0 76 98]);

 data = coder.load('background.mat','bg');

 scene = imrotate(data.bg,90);

 % Main loop

 for k = 1:60

 img = snapshot(w);

 img = chromaKey(img, scene, refColorYCbCr, 28, 29);

 displayImage(d,img);

 end

 release(w);

 release(d);

end

CODE EXCERPT 4

runOnHardware(r,'chromaKeyApp')

CODE EXCERPT 5

% Prepare files for transfer to NVIDIA Jetson TX2

copyfile('Scenery.jpg','codegen/exe/chromaKey/');

copyfile('main _ webcam.cu','codegen/exe/chromaKey/');

copyfile(fullfile(matlabroot,'extern','include',...

 'tmwtypes.h'),'codegen/exe/chromaKey/');

copyfile('buildAndRun.sh','codegen/exe/chromaKey/');

CODE EXCERPT 7

$> sudo ./jetson _ clocks.sh

$> cd codegen/exe/chromaKey

$> nvcc -o chromaKey *.cu -rdc=true -arch ...

 sm _ 62 -O3 `pkg-config --cflags ...

 --libs opencv̀ -lcudart

$> ./chromaKey 1

CODE EXCERPT 8

% Create GPU Coder configuration for Jetson TX2
cfg = coder.gpuConfig('exe');
cfg.GpuConfig.MallocMode = 'Unified';
cfg.GpuConfig.ComputeCapability = '6.2';
cfg.GenCodeOnly = 1;
cfg.CustomSource = 'main _ webcam.cu';

% Create sample inputs
fg = imread('greenScreenFrame.jpg');
bg = imread('Scenery.jpg');
refColorRGB = [70 130 85]; % RGB light Green
tmpColor = zeros([1,1,3],('uint8');
tmpColor(1,1,:) = uint8(refColorRGB);
refColor = rgb2ycbcr(tmpColor);
threshold1 = 14;
threshold2 = 20;

% Generate CUDA code for chromaKey
codegen -config cfg -args ...
 {fg,bg,refColor,threshold1,threshold2} chromaKey

CODE EXCERPT 6

refColorRGB = zeros([1,1,3],'uint8');

refColorRGB(1,1,:) = uint8([93 177 21]);

refColorYCbCr = rgb2ycbcr(refColorRGB);

t1 = 28;

t2 = 29;

data = coder.load('background.mat','bg');

scene = data.bg;

% Main loop

for k = 1:1000

 img = snapshot(cam);

 imgFinal = chromaKey(img, scene, ...

 refColorYCbCr, t1, t2);

 figure(1),image(img);

 figure(2),image(imgFinal);

 drawnow;

end

CODE EXCERPT 3

41 MathWorks News&Notes | 2 0 1 8 – 2 0 1 9

Let’s say you’ve trained a deep learning network to recognize common
objects. You run the network on some test data and, hopefully, get the
result you’re looking for: correct classification of the input image.

Have you ever wondered what your deep learning network actually
looked at to produce that result? For example, if a network classifies
this image as “French horn,” what part of the image mattered most for
the classification?

In a paper about visualization techniques for convolutional neural
networks, MathWorks developer Birju Patel came across the idea of
occlusion sensitivity. If you block out, or occlude, a portion of the
image, how does that affect the probability score of the network? And
how does the result vary depending on which portion you occlude?

See what Birju discovered
blogs.mathworks.com/deep-learning/2017/12/15/
network-visualization-based-on-occlusion-sensitivity/

What Does a Deep
Learning Network

“See”?

https://blogs.mathworks.com/deep-learning/2017/12/15/network-visualization-based-on-occlusion-sensitivity/
https://blogs.mathworks.com/deep-learning/2017/12/15/network-visualization-based-on-occlusion-sensitivity/

With just a few lines of MATLAB® code, you can use CNNs and training datasets
to create models, visualize layers, train on GPUs, and deploy to production systems.

mathworks.com/deeplearning

MATLAB SPEAKS

DEEP LEARNING

©2018 The MathWorks, Inc.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. 93183v00 10/18

https://www.mathworks.com/solutions/deep-learning.html
http://www.mathworks.com/trademarks

