
MathWorksNews&Notes
The Magazine for the MATLAB® and Simulink® Community 

IN THE FRONT SEAT 
with a Driver-in-the-Loop Automotive Simulator

Power Converter  
Control Software  
for J-PARC Particle  
Accelerator

ALSO IN THIS ISSUE

Longitudinal Controls 
for a Self-Driving Taxi

Run MATLAB Image 
Processing on Raspberry 
Pi and NVIDIA

Integrating Risk  
Analytics and Modeling 
in a Production  
Enterprise Application







Beyond Image Classification: 
Apply Deep Learning
Whether the input is a D-signal, 
time-series data, or even text, 
CNNs offer the ability to process 
data in new ways. 

Three Ways to Estimate 
Remaining Useful Life for 
Predictive Maintenance  
Use these Predictive Maintenance 
Toolbox models for estimating RUL 
from lifetime data, run-to-failure 
data, and threshold values. 

Run MATLAB Image Processing 
Algorithms on Raspberry Pi  
and NVIDIA Jetson 
Prototype an algorithm on a 
Raspberry Pi board and deploy it 
to an NVIDIA Jetson Tx1 platform to 
achieve real-time performance. 

3020 36

HOW TOs

FEATURES

Longitudinal Controls for a Self-Driving Taxi   
“The very first passenger to ride in one of our self-driving 
taxis was a blind woman named Bev. Bev said that the 
ride felt much smoother than some vehicles driven by 
sighted people.”

A Smartphone-Based Signals  
and Systems Laboratory 
“The students generate C code from their MATLAB 
programs for mobile apps that they run on their Android 
or iPhone devices. This approach gives them first-hand 
experience with hardware constraints and implementation.”

Integrating Risk Analytics and Modeling in a 
Production Enterprise Application
Swiss Re developers made their core risk models available 
as a production IT system. 

Power Converter Control Software for the  
J-PARC Particle Accelerator
Japan’s High Energy Accelerator Research Organization 
(KEK) engineered a power converter capable of delivering 
more than 100 MW to electromagnets used to control 
proton beams in J-PARC’s main ring particle accelerator. 

Putting Engineers in the Front Seat with a  
Driver-in-the-Loop Automotive Simulator
“We were astonished when dozens of students began 
showing up after school hours to ask us how they could 
improve their MATLAB algorithms and develop more 
advanced solutions.”

Cleve’s Corner: A Brief History of MATLAB 
Cleve explains how a simple matrix calculator became the 
sophisticated technical computing language it is today.

4

8

12

16

26

32



A Smart Jacket That Could Save  
Millions of Children’s Lives

An Imaging Algorithm That Lets You  
See Around Corners 

Third-Party Products: Extending Simulink for 
Complex System Simulation and Integration

MATLAB and Simulink in the World: 
Transformative Technology

What Does a Deep Learning  
Network See?

11

15

23

24

QUICK READS

Managing Editor 
Linda Webb

Editor 
Rosemary Oxenford 

Graphic Designer 
Gabrielle Lydon 

Production Editor 
Julie Cornell

Technical Writer 
Jack Wilber 

Printed on 30% post- 
consumer waste materials

41

Printer 
DS Graphics

Print Liaison 
Jill Mespelli

Editorial Board 
Thomas Andraczek, Michael Carone,  
Ye Cheng, Stacey Gage,  
Michelle Hirsch, Maureen Maher,  
Andy May, Cleve Moler, Sameer Prabhu, 
Richard Rovner, Loren Shure,  
John Stewart, Jim Tung 

Contributors and Reviewers
R. Agrawal, T. Atkins, A. Balu, P. Barnard,  
A. Baru, M. Belge, G. Bourdon, J. Brock,  
G. Campa, R.  Cherukuri, B. Chou,  
M. Corless, K. Deeley, D. Doherty,  
O. Dufour, S. Eddins, M. Enelund,  
J. Erickson, J. Ghidella, H. Gorr,  
C. Grytberg, L. Harvey, L. Heske,  
A. Hosagrahara, K. Hyman, N. Ide, W. Jin, 
T. Jones, P. Kapur, N. Kehtarnavaz, D. Koh,  
S. Kozola, Y. Kurimoto. T. Kush,  
R. Lang, T. Lennon, R. Lawrence,  
K. Lorenc, P. Massano, A. Matsumoto, 
L. McNamara, R. Michaely, A. Mond, 
A. Nehemiah, D. Oswill, J. Paloschi,  
B. Patel, R. Pillat, P. Pilotte, J. Pingel,  
A. Poon, O. Pujado, H. Richardson, J. Rose, 
D. Sampson, K. Shibata, S. Tandon,  
B. Tannenbaum, A. Taylor, G. Thomas,  
T. Tohyama, A. Turevskiy, A. Urbain,  
R. van de Pol, T. Varga, V. Veerappan,  
S. Velilla, G. Venkataramani,  
S. Wilcockson, J. Zhao

Subscribe
mathworks.com/subscribe

Contact Us
mathworks.com/contact

Find Us Online

https://www.mathworks.com/company/newsletters/signup.html
https://www.mathworks.com/company/aboutus/contact_us.html
https://www.facebook.com/MATLAB
http://www.twitter.com/MATLAB
http://www.linkedin.com/company/the-mathworks_2
https://www.instagram.com/mathworks/
https://www.youtube.com/user/MATLAB


SELF-DRIVING TAXI
Developing Longitudinal Control Algorithms to  
Maintain Vehicle Stability and Ensure a Smooth Ride

By Alan Mond, Voyage Auto
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At Voyage, we want every passenger to feel 
that same level of safety and comfort. As a 
small startup competing against many larg-
er organizations working on autonomous 
driving technology, we want to iterate as 
quickly as possible. One of our team’s goals 
is to minimize the time between exploring 
ideas on the whiteboard and getting those 
ideas onto the road. To achieve that goal, 
we focused our efforts, scoping our first taxi 
service to operations in small communities 
(Figure 1), and refined our design through 
multiple iterations. We used Docker contain-
ers to manage system dependencies and the 
Robot Operating System (ROS) as the mid-

The very first passenger to ride in one of our 
self-driving taxis was a blind woman named Bev. When asked about the 
drive, Bev said she felt safe—that the ride felt much smoother than some  
vehicles driven by sighted people.

FIGURE 1. A Voyage self-driving taxi on the road at The Villages community in Florida. 

dleware for perception, motion planning, 
and controls. Instead of manually coding the 
model predictive control (MPC) algorithms 
for the longitudinal control system, we used  
Model-Based Design with MATLAB® and 
Simulink®. 

Our team of three engineers completed the 
initial braking and acceleration control sys-
tem in just two months.

Bounding the Complexity of  
the Self-Driving Car 

Self-driving cars incorporate multiple com-
plex systems to sense the surrounding  

environment, plan a path to a destination, 
and control steering and speed (Figure 2).  
Compounding the challenge of designing 
and implementing these systems are all the 
objects and hazards in the environment, 
which include intersections, crosswalks, 
roundabouts, construction activity, pedestri-
ans, U-turns, one-way streets, animals, and 
speed limits, not to mention the unpredict-
able driving patterns of other vehicles.

To simplify the control design challenge, 
we decided to deploy our first self-driving 
taxis in strategic partner retirement com-
munities. Not only are these communities  
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well-mapped and clearly defined, they also 
have set speed limits, typically 25 mph 
(40 kph). 

Jumpstarting Development with 
an Adaptive Cruise Control  
System Example 

First, our team researched ways to safely 
implement longitudinal control as rapidly 
as possible. We decided to begin with the  
MATLAB adaptive cruise control (ACC) 
system example . This example includes a  
Simulink model that uses MPC to implement 
an ACC system capable of maintaining a set 
speed or a set distance from a lead vehicle 
(Figure 3). 

After downloading this model and run-
ning some preliminary simulations in  
Simulink, I generated C++ code from the mod-
el for a standalone ROS node with Robotics  
System Toolbox™ and Simulink Coder™. All 
the software for our self-driving taxi is mod-
ular, and each subsystem—perception, path 
planning, and longitudinal control, among 
others—runs as a ROS node. Within three 

days we were running the generated code for 
the ACC in our vehicle. 

Creating Our Own Model  
Predictive Controller from  
the Ground Up

While the ACC Simulink model had poten-
tial, it could not meet all our requirements. 
For example, the vehicle was too jerky when 
starting and stopping, and we found that 
riders are especially sensitive to this type of 
motion. (A passenger in our taxi will not 
necessarily feel how well the detection and 
perception algorithms are working, but they 
will immediately feel how well the longitudi-
nal control works.) 

We went back to the drawing board and de-
signed a system from the ground up, quite 
literally going to a whiteboard and creating 
a kinematic model that describes the motion 
of the taxi based on first principles. We im-
plemented this kinematic model in Simulink, 
using it as a foundation for the controller de-
sign. We then modified the parameters of 
the MPC model to meet our requirements 

and incorporated additional logic to handle 
edge cases and scenarios that the original 
MPC model handled suboptimally, such as  
stop-and-go driving. 

In these early stages of development, we 
imported gigabytes of data from rosbag log 
files into the MATLAB environment with 
Robotics System Toolbox, and filtered out all 
ROS topics not relevant to the longitudinal 
controller. Once the data was imported, we 
could access it like any other MATLAB vari-
able, which made it easy to analyze and work 
with.

We simulated the control model in Simulink 
to make sure that its output, accelerator pedal 
position, and braking pedal position looked 
reasonable and that the model behaved as we 
expected for our target sets of inputs.

Conducting In-Vehicle Tests 

The simulations gave us enough confidence 
in our control design to try it out in the car, 
with our team as the first passengers. We gen-
erated C++ code from the redesigned control 

FIGURE 2. System overview of a Voyage self-driving taxi. 
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FIGURE 3. Simulink model of an adaptive cruise control system. 

model for a ROS node and deployed the node 
to the vehicle within a Docker container. 
Docker enabled us to create an image of our 
production environment with all the neces-
sary dependencies and then maintain and 
replicate that image consistently throughout 
development and testing. 

During the initial in-vehicle tests, it was im-
mediately apparent that our controller was 
too aggressive with acceleration and brak-
ing. Although the graphs we plotted during 
simulations showed what looked like smooth 
changes in velocity, the actual riding expe-
rience was anything but smooth. This reali-
zation highlighted for us the importance of 
quickly going from concept to onroad tests 
with Model-Based Design. We simply could 
not judge the quality of our design well 
enough in the lab; we had to experience it as 
our passengers would, in the car.

We completed several design iterations, tun-
ing parameters and constraints, including 
limits on acceleration and jerk, as well as 
time constants and the rate at which outputs 
from the MPC were updated. We set up ROS 

parameters in the Simulink model to make it 
easier for our colleagues to calibrate param-
eters directly via ROS. They could quickly 
update parameter values even if they had no 
prior experience with Simulink.

Creating Virtual Vehicles to  
Test Braking Scenarios

Because it would be unsafe to test scenarios 
in which another vehicle swerves into our 
vehicle’s lane, we created a new type of ROS 
node to simulate a ghost barrier—essential-
ly, a virtual vehicle that we could position at 
various distances from the taxi. We created 
this virtual vehicle in Simulink and parame-
terized it so that we could, for example, have 
it start at zero velocity and gradually increase 
speed. We generated code for the ROS node 
with Simulink Coder and then used the node 
to test and tune the controller’s braking per-
formance. With this node, which took only a 
few hours to develop, we could generate vir-
tual obstacles in front of our taxi to see how 
it would respond, and then adjust its perfor-
mance until it stopped safely and smoothly. 

On the Road 

The longitudinal controller we developed 
using Model-Based Design is in operation in 
self-driving taxis in the retirement commu-
nities that Voyage serves. We are seeing in-
creased demand, with usage growing by 10% 
each week. Our engineering team is learning 
from data gathered during these rides, and 
we continue to refine the controller by incor-
porating what we learn.

Voyage 
voyage.auto 

Design an Adaptive Cruise  
Control System Using Model  
Predictive Control 
mathworks.com/adaptive-cruise- 
control 
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All undergraduate electrical engineering students 
 at the University of Texas at Dallas are required to take a course on signals and 
systems. We supplement this third-year course with a one-credit lab that gives  
students a chance to implement the concepts they learn in lecture. 

For the past several years, I’ve taught 3102 Signals and Systems  
Laboratory with an emphasis on hands-on coding. Students complete 
assignments on convolution, Fourier series, Fourier transform, and 
other key signals and systems concepts by writing short MATLAB® 
programs. I recently added a new dimension to the lab: The students 
now use MATLAB Coder™ to gen-
erate C code from their MATLAB 
programs to enable the creation of 
mobile apps that they run on their 
Android™ or iPhone devices.

This approach enables students to 
complete lab work anytime and 
anywhere, and gives them first-
hand experience with hardware 
constraints and practical imple-
mentation issues. It also adds in-
terest to the course. In their assessments of the most recent Signals 
and Systems Laboratory, students reported that the use of smart-
phones increased their engagement with the material.

Taking Lab Work Out of the Lab

Few universities have a lab associated with signals and systems, and 
those that do often involve running MATLAB code on desktop com-
puter platforms. Because of the limitation on the number of computer 
platforms in a lab room, lab time is tightly scheduled. Last semes-

ter alone, about 200 third-year electrical and biomedical engineering 
students enrolled in 3102 Signals and Systems Laboratory. Even after 
creating 10 sections, it is challenging to find lab time and space for 
that many students.

However, the processors in the 
mobile devices that students bring 
to class every day are more than 
powerful enough to run signal pro-
cessing algorithms. By creating lab 
assignments that use the students’ 
own devices as the processing 
hardware, I have enabled students 
to experiment anywhere and at any 
time. The school’s Total Academic 
Headcount license, which provides 
students with campus-wide access 

to MATLAB on their own laptops, helped make this possible.

Creating a Framework for Signal  
Processing Mobile Apps

Before I could ask students with little programming experience to 
create mobile apps, I needed to give them a straightforward way to 
translate their MATLAB code into C code. I also needed a framework 
that they could use to run the C code on mobile devices.

I met the first requirement with MATLAB Coder, which enables 

Creating a Smartphone-Based Signals and 
Systems Laboratory for Undergraduate 
Engineering Students
By Nasser Kehtarnavaz, University of Texas at Dallas

I wanted to challenge the students with-
out overwhelming them. With students 
new to programming, it was important 
to keep the focus on applying signals and 
systems principles instead of working 
through complex programming exercises. 



MathWorks News&Notes      9

FIGURE 1. Diagram of programming shells used to run C algorithms on iPhone and Android devices.
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students to generate efficient C code for their smartphones from  
MATLAB code that they develop and debug on their laptops. To meet 
the second requirement, I developed two programming shells that 
students can install on their mobile devices, one for iOS, written in 
Objective C, and one for Android, written in Java® (Figure 1).

Introducing MATLAB and Basic Programming

Because few of the students enrolled in Signals and Systems  
Laboratory have experience with MATLAB or with computer pro-
gramming, I begin the course with an introduction to programming 
principles in MATLAB. The students first learn basic programming 
concepts, including arithmetic and vector operations, array indexing, 
memory allocation, and control flow. I then cover the more advanced 
techniques that they will need to complete their assignments, includ-
ing loading and saving data, reading wave files, and generating sig-
nals.

Over the following two weeks, the students practice generating 
C code with MATLAB Coder and compiling apps in the smart-
phone programming environment for their specific device. All the  

materials and assignments come from the book written for the lab 
course, Anywhere-Anytime Signals and Systems Laboratory: From 
MATLAB to Smartphones.

Developing Apps for Convolution, Fourier Series, 
and Fourier Transform

The first mobile app that the students develop is for a lab assignment 
on solving linear time-invariant (LTI) systems via the convolution 
integral. In this assignment, the LTI systems examined are RLC cir-
cuits. The students use MATLAB to perform a numeric approxima-
tion of the convolution integral and find the output voltage or cur-
rent in response to a given input voltage or current. After developing 
and testing their solution in MATLAB, the students generate C code 
with MATLAB Coder. They then compile this C code along with the  
device-specific shells that I provide them to build an app for their 
mobile devices (Figure 2).

Next, the students explore Fourier series summation and reconstruc-
tion of periodic signals. They learn that if they know the response 
of a linear circuit to one sinusoidal input signal, they can obtain the 
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response to any periodic signal by decomposing it into sinusoidal 
signals and performing a linear superposition of the sinusoidal sig-
nals. As with the previous assignment, the students first develop an 
algorithm that demonstrates this principle in MATLAB and then use 
MATLAB Coder to implement that algorithm in C code for a mobile 
app (Figure 3).

In the remaining lab assignments, the students use this same process 
to build apps that demonstrate their ability to use Fourier transforms 
for noise cancellation and amplitude modulation and to perform  
analog-to-digital and digital-to-analog conversions via signal sam-
pling, quantization, and reconstruction.

In creating the lab assignments, I wanted to challenge the students 
without overwhelming them. With students new to programming, 
it was important to keep the focus on applying signals and systems 
principles instead of working through complex programming exer-
cises. For example, I allowed them to use the conv() and fft() 
functions in MATLAB rather than writing their own convolution and 
Fourier transform algorithms.

When I see the flash of recognition cross my students’ faces, I know 
that the approach has worked. Some students, for instance, question 
why they need to move to the frequency domain with a Fourier trans-
form if they’ve already solved a system with convolution. When they 
see the problems they encounter as the frames get longer and longer 
and they can no longer use convolution, they see exactly why this is 
necessary.

With MATLAB Coder, I can provide hands-on activities that enable 
the students to experience and overcome the challenges that come 
with implementing actual solutions in the real world. In doing so, I 
achieve better outcomes and engagement from the students.

FIGURE 2. Mobile app for lab on linear 
time-invariant systems and convolution.

FIGURE 3. Mobile app for the Fourier series lab.

Anywhere-Anytime Signals and Systems Laboratory:  
From MATLAB to Smartphones  
mathworks.com/signals-systems-lab

Mobile Device Shells and Sample Code  
sites.fastspring.com/bookcodes/product/SignalsSystems-
Bookcodes

iPhone and iPad Support from MATLAB Coder  
mathworks.com/iphone-matlab

LEARN MORE
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http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes
https://www.mathworks.com/hardware-support/iphone-matlab-coder.html
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According to the World Health Organization, a child dies from pneumonia every 
20 seconds. UNICEF reports that in sub-Saharan Africa, more than 490,000 
children under 5 die from the disease each year. Diagnostic equipment  
and trained clinicians are scarce in remote areas, so the disease often  
goes undiagnosed.

Three engineering graduates from Makere University, Uganda, developed  
Mama-Ope (“mother’s hope”), a biomedical smart jacket that can diagnose  
pneumonia faster than a doctor. Designed for children under 5, the jacket works 
like a wearable stethoscope, using sensors to measure the patient’s temperature, 
breathing rate, and wheezing levels. The results are recorded on a mobile app 
connected to Mama-Ope via Bluetooth, and sent to a healthcare professional for 
further analysis.

The team used MATLAB® signal analysis functions to filter and identify abnormal 
patterns in data collected by the device. The MATLAB analysis helped the  
team determine crucial parameters, such as the design of the filter and  
amplifier circuits.

Once the jacket is certified for clinical use in Uganda, the team intends to  
produce and supply it to countries throughout East Africa.

Read the full story
mathworks.com/fighting-childhood-pneumonia

A Smart Jacket 
That Could Save 
Millions of  
Children’s Lives

Image credit: RAEng/Brett Eloff
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As the world’s second largest reinsurer, Swiss Re 
must take into account a broad set of risk factors from across the globe. For  
the past 10 years, we have calculated risk measures such as value at risk (VaR) 
and expected shortfall using the Internal Capital Adequacy Model (ICAM), a  
core risk model built with MATLAB®. As we continued to expand ICAM’s  
capabilities over the years, however, it became increasingly hard to manage  
the complexity. Numerous interdependencies made it difficult to fully  
understand how the model worked.

Integrating Risk Analytics and Modeling  
in a Production Enterprise Application
By Tamás Varga, Swiss Re

To make ICAM easier to understand, update, and maintain, we com-
pleted a major overhaul. We made the revamped ICAM core avail-
able as a production IT system—the Integrated Risk Analytics and  
Modeling Platform (IRAMP)—and sped up risk modeling calcula-
tions by executing them on a computer cluster. MATLAB, MATLAB 
Production Server™, and MATLAB Distributed Computing Server™ 
enabled us to achieve both these objectives without having to develop 
custom IT infrastructure.

Applying Object-Oriented Programming  
to Improve ICAM Transparency  
and Maintainability

ICAM is designed to enable risk reporters to understand the aggre-
gate effect of approximately 300,000 risk factors on the company’s to-
tal economic balance sheet. Categories include interest rates, equity 
prices, real estate prices, credit spreads, and claims inflation, as well 
as operational risks, natural disasters, and mortality trends. In rewrit-
ing ICAM, we wanted to make it easier for risk reporters to see how 

these factors affected risk measures. One of our most effective changes 
was to apply more object-oriented programming principles in writing 
the MATLAB code. Today’s version of ICAM has more 75,000 lines 
of MATLAB code—all under version control—comprising 400 data 
classes and 250 classes for risk factors and loss functions. The graphics 
and objects classes in our code have enabled us to increase the num-
ber of user interfaces in ICAM and to control them in a maintainable 
way (Figure 1).

Building an Enterprise Application  
for Risk Analysis

Calculating VaR, expected shortfall, and other risk measures with 
a one-year horizon from 300,000 risk factors is a computational-
ly intensive process, involving Monte Carlo simulations in which 
1,000,000 realizations are generated for each risk factor. We are using 
Statistics and Machine Learning Toolbox™ for regression, generalized 
linear models, and data compression and preparation as well as Monte  
Carlo simulations with random samples drawn from a variety of dis-
tributions.
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We employed a three-part strategy for building an enterprise IT ap-
plication to manage the lengthy compute times this process requires. 
First, we set up a computing cluster to support parallel computa-
tions with Parallel Computing Toolbox™ and MATLAB Distributed  
Computing Server. Second, we broke the process down into multiple 
distinct workflows, including validation, preprocessing, calculation, 
and evaluation. Third, we used MATLAB Production Server to es-
tablish a production IT framework that risk reporters could use to 
execute multiple workflows on the computing cluster.

We maintain two environments for developing and maintaining 
ICAM, one for production and one for development and training. 
The computing cluster in our production environment includes 165 
workers. Our development and training environment has a similar 
computing cluster with 111 workers (Figure 2). After validating our 
ICAM application in the development and training environment, we 
prepared it for deployment in the production environment by compil-
ing it into a standalone component using MATLAB Compiler SDK™.

Workers in the cluster are allocated as needed to complete workflows 
initiated by risk reporters. Each workflow is initiated from the IRAMP 
web interface and orchestrated by MATLAB Production Server. To 
begin the process, for example, risk reporters initiate the validate 
workflow, which verifies that the input data is internally consistent. 
Next, they kick off the preprocessing workflow, which transforms the 
raw input data into a format ready for use by the risk model. In the 
calculate workflow, all the Monte Carlo simulations are performed. 
This workflow requires the largest number of workers and the most 
time to complete. The results are stored as a snapshot in a 200 GB file 
on a shared file system. In the evaluate workflow, the risk reporters 
use a MATLAB application that we created to query results from the 
image and perform what-if analyses.

From Desktop to Cluster to Cloud

The overhaul of ICAM and development of IRAMP have been well 
received by risk reporters because the system is more transparent 
from end to end. While MATLAB provides a powerful and efficient  

FIGURE 1. ICAM user interface.
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development environment, by using MATLAB Production Server 
and MATLAB Distributed Computing Server for both the develop-
ment and production environments, we ensure consistent results and 
increased stability in production.

We are now working with MathWorks engineers to migrate the 
IRAMP system to an external cloud-based system such as Microsoft® 
Azure®. This will provide for a larger scale and more flexible system, 
allowing us to reduce costs by scaling down during periods of low 
demand and to reduce wait times by scaling up during periods of  
high demand.

MATLAB Production Server for Financial Applications (38:38) 
mathworks.com/video-81937

Aberdeen Asset Management Implements Machine Learning–
Based Portfolio Allocation Models in the Cloud 
mathworks.com/aberdeen

LEARN MORE
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FIGURE 2. IRAMP system architecture for development and production environments.

https://www.mathworks.com/videos/matlab-production-server-for-financial-applications-81937.html
https://www.mathworks.com/company/user_stories/aberdeen-asset-management-implements-machine-learning-based-portfolio-allocation-models-in-the-cloud.html
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Stanford University’s new laser-based imaging technology could take blind 
spot detection in cars to a whole new level. Not only can it see things the 
driver can’t, it “sees” things that are not even in the line of sight.

The Stanford system can detect objects, in 3D, hidden behind walls and 
around corners. It uses a pulse of laser light and a photon detector to  
capture light that scatters off a wall and reflects off objects hidden from view.  
A photon detector sensitive enough to detect a single photon creates a 
“scan” of the reflected light pulses. A computational reconstruction algorithm,  
created with MATLAB®, uses information from the scan to infer the 3D  
shape of the hidden objects. 

Read the full story
blogs.mathworks.com/headlines/2018/03/16/ 
imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/ 

See how the system works
computationalimaging.org/publications/confocal-non-line- 
of-sight-imaging-based-on-the-light-cone-transform/

An Imaging Algorithm That  
Lets You See Around Corners 

Image credit: Stanford Computational Imaging Lab

https://blogs.mathworks.com/headlines/2018/03/16/imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/
https://blogs.mathworks.com/headlines/2018/03/16/imaging-algorithm-lets-you-see-around-corners-with-laser-pulses/
http://www.computationalimaging.org/publications/confocal-non-line-of-sight-imaging-based-on-the-light-cone-transform/
http://www.computationalimaging.org/publications/confocal-non-line-of-sight-imaging-based-on-the-light-cone-transform/


NEUTRINOS AT J-PARC
Developing Power Converter Control Software  
for the J-PARC Particle Accelerator

By Yoshinori Kurimoto, High Energy Accelerator Research Organization (KEK)
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The T2K experiment is a long baseline 
neutrino oscillation experiment in which  
neutrinos and antineutrinos produced at the 
Japan Proton Accelerator Research Com-
plex (J-PARC) are observed in the Super-
Kamiokande detector located 295 km away. 
Finding a difference in oscillations between 
neutrinos and antineutrinos would provide 
an essential clue about how our universe was 
formed. The largest task of the experiment is 
the production of numerous neutrinos and 
antineutrinos. In the T2K experiment, neu-
trinos are created with the J-PARC proton 

R
esults from the T2K experiment suggest 
that neutrino oscillations may hold the key to understanding a funda-
mental question about the universe: why it contains vastly more matter 
than antimatter when the Big Bang is believed to have produced equal 
amounts of both. 

accelerator by accelerating protons to near 
light speed and smashing them into a target 
material. To expand our investigation of neu-
trino oscillations, we need to produce more 
neutrinos by increasing the rate at which we 
supply protons via the accelerator. Then, once 
the proton beams enter the main ring, we 
need more powerful electromagnets to con-
trol the beams as they travel around the ring  
(Figure 1).

None of the manufacturers we usually 
worked with were able to engineer a power 

converter that could deliver the power need-
ed for these stronger electromagnets within 
our budget. We therefore decided to help the 
engineering effort by developing the control 
software ourselves. 

Neutrino research is an area of intense com-
petition, and we need to keep pace with labs 
in the U.S. and Europe that are engaged in 
similar research. To speed development and 
keep down costs, we developed the power 
supply control software using Model-Based 
Design with Simulink® and deployed it to 

FIGURE 1. Bird’s-eye view of J-PARC showing the main ring and path of proton beams in red. 
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an FPGA using HDL Coder™. Model-Based 
Design enabled us to develop the control 
software at a cost 60% less than the estimates 
provided by major manufacturers and to cut 
development time by more than 50%.

Our Challenge: Almost Double 
the Voltage Supplied to J-PARC 
Electromagnets

To appreciate how important a larger pow-
er supply was to our research, it helps to 
understand the process for generating and 
detecting neutrinos at J-PARC. First, we use 
a linear accelerator to accelerate negative 
hydrogen ions to about 400 million electron 
volts (MeV). With the J-PARC synchrotron, 
we convert the ions to protons and acceler-
ate the protons to 1.3 billion electron volts 
(GeV) in J-PARC’s small ring, which is about 
350 meters in circumference. The protons are 
then directed to the main ring (about 1.5km 
in circumference), where they are accelerated 
to 30 GeV before being targeted to the neu-
trino generation facility. In the final stage, 
the neutrinos are observed at the neutrino 
observatory located under Mount Ikeno,  
295 km away.

In the main ring (Figure 2), bending and 
quadrupole electromagnets control the pro-
ton beams’ trajectory by applying precisely 
synchronized magnetic fields.

For our upcoming experiments, we need to 
supply more protons, which means reduc-
ing the amount of time needed to switch (or 
cycle) the electromagnet from 2.48 seconds 
to 1.3 seconds. The time required to switch 
an electromagnet is inversely proportion-
al to the voltage applied, which means that 
we have to almost double the voltage, cor-
responding to the total output power of ap-
proximately 100 MW—more than the elec-
trical grid is capable of providing.

Designing and Implementing  
the Power Converter Controller

The converter has two main components: 
a three-phase AC-to-DC voltage converter 
that is used to charge large capacitors, and a 

chopper that supplies power from the capac-
itors to the electromagnet (Figure 3).

One of our goals in designing the power 
converter controller was to verify our design 
through simulation before performing tests on 

actual hardware. We started by creating a plant 
model of the power supply’s three-phase AC/
DC converter and chopper using Simulink,  
Simscape™, and Simscape Electrical™. We then 
created a complete system model of the con-
troller and plant (Figure 4).

FIGURE 2. The J-PARC main ring, showing the bending and quadrupole electromagnets used to 
control the proton beam trajectory.

FIGURE 3. Schematic of the new electromagnet power supply unit.
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pabilities of the FPGA made it preferable to 
a microcontroller with relatively few inputs 
and outputs. One advantage of Model-Based 
Design is that, should we choose to redeploy 
on a microcontroller in the future, we will 
be able to generate C code from our existing 
controller design with Embedded Coder® 
and be up and running on a new target very 
quickly.

After running simulations to verify the de-
sign and tune control parameters, we gen-
erated synthesizable Verilog® code from our 
controller model using HDL Coder.

We deployed this code to a device from In-
tel’s Cyclone® FPGA family and tested it us-
ing a smaller version of the production pow-
er supply. We verified that the waveforms 
from this setup matched the waveforms 
shown in the simulation results, with only 
minor deviations.

Finally, we tested and verified the FPGA 
controller on the actual power converter 
hardware.

We have completed the implementation of 
the first power converter unit equipped with 
our FPGA-based controller. We are current-
ly building the remaining units needed for 
the entire main ring at J-PARC. We expect 
to begin neutrino oscillation experiments 
with this new setup when construction of 
these units is completed.

Power Converters  
Modeling Techniques  
mathworks.com/power-converter- 
modeling 

Generating HDL Code for  
FPGA and ASIC  
mathworks.com/verifying-hdl-code

LEARN MORE

FIGURE 4. Simulink model of the power converter and its controller. 

FIGURE 5. Simulink model of controller subsystems. 

The controller model includes subsystems 
for DC voltage control, active power con-
trol, reactive power control, and pulse-width 
modulation, as well as elements for per-
forming the direct-quadrature-zero trans-
formations between three-phase signals and 

the direct-quadrature (dq0) reference frame  
(Figure 5).

We selected an FPGA for the first version 
of our design because we needed to control 
multiple modules, and the input/output ca-

https://www.mathworks.com/help/physmod/sps/examples/power-converters-modeling-techniques.html
https://www.mathworks.com/help/physmod/sps/examples/power-converters-modeling-techniques.html
https://www.mathworks.com/products/hdl-coder/features.html#verifying-hdl-code
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Deep learning networks are proving to be versatile tools. Originally intended for  
image classification, they are increasingly being applied to a wide variety of other 
tasks, as well. They provide accuracy and processing speed—and they enable you  
to perform complex analyses of large data sets without being a domain expert. Here 
are some examples of tasks for which you might want to consider using a deep  
learning network.

Text Analytics

In this example, we’ll analyze twitter data to see whether the senti-
ment surrounding a specific term or phrase is positive or negative. 
Sentiment analysis can have many practical applications, such as 
branding, political campaigning, and advertising.

Machine learning was (and still is) commonly used for sentiment 
analysis. A machine learning model can analyze individual words, but 
a deep learning network can be applied to complete sentences, greatly 
increasing its accuracy.

The training set consists of thousands of sample tweets categorized as 
either positive or negative. Here is a sample training tweet: 

We clean the data by removing “stop words” such as “the” and “and,” 
which do not help the algorithm to learn. We then upload a long 
short-term memory (LSTM) network, a recurrent neural network 
(RNN) that can learn dependencies over time. 

LSTMs are good for classifying sequence and time-series data. When 
analyzing text, an LSTM will take into account not only individual 
words but sentence structures and combinations of words, as well. 

The MATLAB® code for the network itself is simple:

layers = [ sequenceInputLayer(inputSize)

    lstmLayer(outputSize,'OutputMode','last')

    fullyConnectedLayer(numClasses)

    softmaxLayer
    classificationLayer ]

When run on a GPU, it trains very quickly, taking just 6 minutes for 
30 epochs (complete passes through the data). 

Once we’ve trained the model, it can be used on new data. For ex-
ample, we could use it to determine whether there is a correlation 
between sentiment scores and stock prices.

Tweet Sentiment
“I LOVE @Health4UandPets u guys r the best!!”	 Positive

“@nicolerichie: your picture is very sweet” Positive

“Back to work!” Negative

“Just had the worst presentation ever!” Negative

Beyond Image Classification:  
More Ways to Apply Deep Learning
By Johanna Pingel, MathWorks
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Image Denoising

Wavelets and filters were (and still are) common methods of de-
noising. In this example, we’ll see how a pretrained image denois-
ing CNN (DnCNN) can be applied to a set of images containing  
Gaussian noise (Figure 3).

Speech Recognition 

In this example, we want to classify speech audio files into their 
corresponding classes of words. At first glance, this problem looks 
completely different from image classification, but it’s actually very 
similar. A spectrogram is a 2D visualization of the signals in a 1D 
audio file (Figure 1). We can use it as input to a convolutional neural 
network (CNN) just as we would use a “real” image.

The spectrogram() function is a simple way of converting an 
audio file into its corresponding time-localized frequency. However, 
speech is a specialized form of audio processing, with important fea-
tures localized in specific frequencies. Because we want the CNN to 
focus on these locations, we will use Mel-frequency cepstral coeffi-
cients, which are designed to target the areas in frequency in which 
speech is most relevant.

We distribute the training data evenly between the classes of words 
we want to classify.

To reduce false positives, we include a category for words likely to be 
confused with the intended categories. For example, if the intended 
word is “on,” then words like “mom,” “dawn,” and “won” are placed in 
the “unknown” category. The network does not need to know these 
words, just that they are not the words to recognize. 

We then define a CNN. Because we are using the spectrogram as an 
input, the structure of our CNN can be similar to one we would use 
for images.

After the model has been trained, it will classify the input image 
(spectrogram) into the appropriate categories (Figure 2). The accura-
cy of the validation set is about 96%. FIGURE 3. Original image with Gaussian noise added.

FIGURE 1. Original audio signals (top) with corresponding  
spectrograms.

FIGURE 2. Classification result for the word "yes."
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Let’s zoom in on a few details:
rect = [120 440  130  130];

cropped_orig = imcrop(RGB,rect);

cropped_denoise = imcrop(denoisedRGB,rect);

imshowpair(cropped_orig,cropped_denoise,... 
   'montage');

The zoomed-in view in Figure 5 shows that the result of denoising has 
left a few side effects—clearly, there is more definition in the original 
(non-noisy) image, especially in the roof and the grass. This result 
might be acceptable, or the image might need further processing, de-
pending on the application that it will be used for. 

If you’re considering using a DnCNN for image denoising, bear in 
mind that it can only recognize the type of noise on which it’s been 
trained—in this case, Gaussian noise. For more flexibility, you can use 
MATLAB and Deep Learning Toolbox™ to train your own network 
using predefined layers or to train a fully custom denoising neural 
network.

Classify Sequence Data Using LSTM Networks
mathworks.com/classify-sequence-data

Deep Learning Speech Recognition
mathworks.com/speech-recognition

LEARN MORE

We start by downloading an image that has Gaussian noise. 

imshow(noisyRGB);

Since this is a color image, and the network was trained on grayscale 
images, the only semi-tricky part of this process is to separate the im-
ages into three separate channels: red (R), green (G), and blue (B).

noisyR = noisyRGB(:,:,1);

noisyG = noisyRGB(:,:,2);

noisyB = noisyRGB(:,:,3);

We load the pretrained DnCNN network. 

net = denoisingNetwork('dncnn');

We can now use it to remove noise from each color channel.

denoisedR = denoiseImage(noisyR,net);

denoisedG = denoiseImage(noisyG,net);

denoisedB = denoiseImage(noisyB,net);

We recombine the denoised color channels to form the denoised  
RGB image.

denoisedRGB = cat(3,denoisedR,denoisedG,...

   denoisedB);

imshow(denoisedRGB)

title('Denoised Image')

A quick visual comparison of the original (non-noisy) image and the 
denoised image suggests that the result is reasonable (Figure 4).

FIGURE 4. Left: original (non-noisy) image. Right: denoised image. FIGURE 5. Zoomed-in view.

https://www.mathworks.com/help/nnet/examples/classify-sequence-data-using-lstm-networks.html
https://www.mathworks.com/help/nnet/examples/deep-learning-speech-recognition.html
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Aspen Technology:   
Aspen Plus Dynamics 
Aspen Plus Dynamics is a dynamic simu-
lation tool for improving plant operations 
and process design. It enables engineers 
to complete process control schemes, de-
sign verification, safety studies, relief value 
sizing, and failure analysis. It includes an 
extensive library of operation and control 
models with support for polymer processes 
and batch process optimization. Aspen Plus 
Dynamics includes a control design inter-
face for extracting linear state-space models 
of nonlinear processes and importing them 
into MATLAB® for controller design. Using 
the Simulink interface you can connect pro-
cess simulations as a block within a Simulink 
model. You can verify controller behavior 
by cosimulating Simulink controller models 
and nonlinear models of plant processes.
aspentech.com/en/products/engineering/
Aspen-Plus-Dynamics

Cadence Design Systems:    
Cadence PSpice Systems Option
The integration of Cadence® PSpice® with 
Simulink provides a complete system-level 
simulation solution for PCB design and im-
plementation. Designers can use PSpice for 
analog or mixed-signal simulation and per-
form Simulink based behavioral-level mod-
eling, analysis, and visualization in a single 
system design and debug environment. The 
PSpice Systems Option enables cosimulation 
of SPICE-level electrical systems and Sim-
ulink based mechanical systems for applica-
tion areas including automotive systems, in-
ternet of things (IoT), and industrial design.
orcad.com/pspice-and-simulink-integration

JSOL: JMAG 
JMAG® finite element analysis software is used for developing electromechanical equipment 
such as motors, power converters, and actuators. JMAG can simulate magnetic flux density 
and electromagnetic forces in permanent magnet, induction, stepper, and a range of other 
motors. For motor control development, JMAG-RT extracts motor features as a precise re-
duced-order model provided as a Simulink block. High-fidelity JMAG-RT models capture 
device performance, including nonlinear effects, saturation, and space harmonics. By cosim-
ulating control algorithms with accurate motor models, engineers can validate their control 
systems before hardware prototypes are available.
jmag-international.com

Mechanical Simulation:   
CarSim, TruckSim, BikeSim
The VehicleSim® products provide meth-
ods for simulating vehicle dynamics under 
a full range of test and driving conditions 
using SIL, HIL, and driving simulators. The 
products provide high-fidelity vehicle dy-
namics models, including braking, handling, 
ride, stability, and acceleration; portfolios of 
example vehicles and test maneuvers; and 
plotting and animation capabilities. Core ve-
hicle models can be extended to work with  
Simulink models of advanced electronic 
controllers or with alternative component 
models. You can connect Simulink models 
to CarSim vehicle dynamics models through 
the S-function plug-in and then cosimulate 
and exchange input and output variables be-
tween models. 
carsim.com

THIRD-PARTY PRODUCTS

Extending Simulink for Complex System 
Simulation and Integration 
Simulink® integrates with third-party modeling tools through its open interfaces, enabling engineers to simulate 
heterogeneous, multi-domain systems at different fidelity levels. You can connect to over 100 modeling and 
simulation tools, serving applications such as electronic circuit board and motor design; mechanical and chemical 
modeling; and specialized vehicle design. Simulink provides the S-function API for efficient model and code 
integration and simulation and supports standards-based interfaces such as Functional Mock-Up Interface (FMI). 

System Modeling and Simulation 
mathworks.com/system-design- 
simulation	

Third-Party Products and Services 
mathworks.com/connections

LEARN MORE

http://www.aspentech.com/en/products/engineering/Aspen-Plus-Dynamics
http://www.aspentech.com/en/products/engineering/Aspen-Plus-Dynamics
http://www.orcad.com/pspice-and-simulink-integration
http://www.jmag-international.com
http://www.carsim.com
https://www.mathworks.com/solutions/system-design-simulation.html
https://www.mathworks.com/solutions/system-design-simulation.html
https://www.mathworks.com/products/connections.html


THE WORLD’S FIRST EYE  
SURGERY ROBOT
Surgery performed inside the eye demands almost 
superhuman precision and stability. A surgeon at 
John Radcliffe Hospital, Oxford, removed a ret-
inal membrane one hundredth of a millimeter 
thick using the PRECEYES Surgical System, an 
inverted joystick-based device that automatical-
ly moves the tool tip in response to the surgeon’s 
movements.

“We wouldn’t dream of fitting a little girl with 
the prosthetic limb of a grown man—so why, 
then, the same prosthetic voice?”

— Rupal Patel, VocaliD 

CROWDSOURCING UNIQUE DIGITAL VOICES
VocaliD is developing the first-ever personalized digital voices, enabling people who rely on synthetic speech for communication to sound like them-
selves. A personalized voice is a blend of the recipient’s vocalization and recordings of a matched speaker from VocaliD’s Human Voicebank, a repos-
itory of 26,000 contributors worldwide. The resulting BeSpoke™ voice can be downloaded for use on text-to-speech devices and applications across all 
platforms.  

Restoring sight and voice, connecting cities with a hyperloop transportation system,  
generating electricity from thin air—engineers at emerging companies are using  
MATLAB® and Simulink® to develop pioneering solutions and break boundaries. 

MATLAB AND SIMULINK IN THE WORLD

TRANSFORMATIVE TECHNOLOGY

LEARN MORE •	 User Stories 
mathworks.com/user-stories 

•	 MATLAB and Simulink for Startups 
mathworks.com/startups 

http://mathworks.com/torino 
http://mathworks.com/melbourne 
https://www.mathworks.com/company/user_stories.html
https://www.mathworks.com/campaigns/products/startups.html


“There are a lot more runways in the world than 
there are launch pads. Our downrange can be 
anywhere we point the aircraft.”

— Patrick Harvey, Virgin Orbit

LAUNCHING SATELLITES  
AT 35,000 FEET
LauncherOne is Virgin Orbit’s two-stage launch vehi-
cle for delivering small satellites into low earth orbit. 
To reduce costs and increase launch location flexibility,  
LauncherOne is designed to be air-dropped from a 747-
400 carrier aircraft in flight. 

HARNESSING HIGH-ALTITUDE WIND ENERGY
Kitenergy converts high-altitude wind energy into electricity by exploiting the flight of automatically 
controlled kites tethered 200–800 meters above the ground. Electricity is generated at ground level by 
converting the traction forces acting on the tethers into mechanical and electrical power, using rotating 
mechanisms and electrical generators.

“Mobile high-altitude wind energy generators can provide 
cheap renewable energy to everyone who needs it.”

— Mario Milanese, Kitenergy

“Imagine a world where distance just doesn’t matter 
anymore—a system that’s faster than airplanes, more 
convenient than trains, and the best alternative for the 
environment. That’s the world we’re making into a 
reality, and it’s called the hyperloop.”

— Mars Geuze, Hardt

FROM CITY TO CITY  
AT THE SPEED OF SOUND
Hardt Hyperloop is developing the first high-speed hyperloop test facility in the 
world in the Dutch province of Flevoland.  The hyperloop consists of small, light-
weight vehicles travelling through a tube with virtually no air resistance, allowing 
them to travel over huge distances very fast, with minimal energy consumption.  

http://mathworks.com/torino 


IN THE FRONT SEAT 
Putting Student Engineers in the Front Seat with a  
Driver-in-the-Loop Automotive Simulator

By Håkan Richardson and Mikael Enelund, Chalmers University of Technology
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Hands-on projects with MATLAB® and  
Simulink® are fundamental to our CDIO-
based curriculum because they let students see 
the effects of their design decisions firsthand. 

Two years ago, we saw an opportunity to en-
able students not just to see the results of their 
work but to feel them, as well. We installed 
a driver-in-the-loop automotive simulator 
that moves a student through six degrees-of- 
freedom as they drive. The simulator is main-
tained, operated, and continuously improved 
by Caster, a Chalmers student organization 
that also helped secure the funds to pur-
chase it. The simulator includes MATLAB 
and Simulink vehicle models. It has an in-
terface that enables students to incorporate 
their own models and feel how their designs 
would perform on a real vehicle. 

The mechanical engineering program has in-
tegrated the Caster simulator into a first-year 
undergraduate programming course and a 
masters-level course in vehicle dynamics. 
More importantly, the facility that houses the 
simulator has emerged as a gathering place 
for students interested in learning more 
about automotive engineering outside a spe-
cific course (Figure 1). FIGURE 1. The Caster lounge, which houses the simulator as well as workstations  

and places for students to socialize.

T
he Conceive, Design, Implement, Operate 
 (CDIO) approach to engineering education that we use at Chalmers 
was designed to address the industry demand for graduates who are 
both well-grounded in engineering principles and equipped to tackle 
real-world engineering problems. 
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Teaching First-Year Programming 
With the Simulator

MATLAB is an essential component of the 
engineering curriculum at Chalmers, and we 
require all undergraduates to take Program-
ming with MATLAB in their first year.

To provide students with a positive introduc-
tion to programming, we incorporated the 
Caster simulator into the first course assign-
ment. The students were asked to write an 
algorithm in MATLAB that set the appropri-
ate gear based on parameters such as engine 
speed (in rpm) and vehicle speed. During 

simulations, the Castor simulator’s MATLAB 
model transmitted these parameters in real 
time as a stream of telemetry data.

The students’ algorithms were tested in a 
drag race with a simulated Camaro SS. The 
students with the fastest times in an initial 
round of desktop simulations advanced to 
the finals, in which they sat in the Caster sim-
ulator as the simulated Camaro raced down 
the drag strip (Figure 2).

Developing a shifting algorithm from scratch 
is daunting for students new to program-
ming, so we provided a rudimentary algo-
rithm that simply shifted from first to fourth 
gear when the vehicle reached 20 km/h. We 
also gave them the vehicle’s engine torque 
curve, gear ratios, and tire slip ratio, and 
delivered a short lecture on how engineers 
use this data to develop optimal shifting al-
gorithms.

We expected most students to develop a 
straightforward implementation that simply 
shifted gears progressively as the car reached 
certain speeds. We thought maybe a handful 
would use the additional torque and gear 
ratio information in a more sophisticated 
algorithm. We were astonished when dozens 
of students began showing up at the Caster 
facility after school hours to ask us how they 
could improve their MATLAB algorithms 
and develop more advanced solutions. The 
enthusiasm generated by this project carried 
through the remainder of the course.

Teaching Masters-Level  
Vehicle Dynamics

Use of the Caster simulator in coursework 
is steadily expanding. At the undergraduate 
level, we plan to employ the simulator in a 
second-year machine design course in which 
mechanical engineering students will design 
a vehicle braking system in MATLAB and 
then run simulations to evaluate their sys-
tems’ performance.

At the graduate level, we have already in-
corporated the simulator into a course on 

FIGURE 2. A student experiencing the effects of his MATLAB code in a drag race in the 
Caster simulator.

FIGURE 3. A graduate student running a vehicle dynamics model simulation.
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vehicle dynamics. In this course, students 
develop their own vehicle models. Working 
in Simulink with a framework model we pro-
vide, the students add the necessary equa-
tions of motion to accurately capture vehicle 
dynamics (Figure 3).

After running offline simulations in  
Simulink, the students plug their models 
into the Caster simulator and evaluate their 
performance on a test track with a skid pad 
and an acceleration straight. We then ask the 
students to model three different weight dis-
tributions between the front and rear axles. 
They sit in the Caster simulator so that they 
can feel how the car reacts to each weight dis-
tribution.

Next, they run a similar set of simulations 
while modifying the brake balance between 
the front and rear axles. In the simulator they 
experience the effects of front brake and rear 
brake locking. For an automotive engineer, 
experiencing the motion in the simulator 
firsthand—rather than just seeing data plot-
ted in a graph—provides a vivid memory and 
a much deeper understanding of the effects 
of design parameters on steering, braking, 
and overall vehicle dynamics.

Like their undergraduate counterparts in the 
introductory programming course, the grad-
uate students were enthusiastic about their 
experience with the Caster simulator. In fact, 

after our first use of the simulator in the ve-
hicle dynamics course, student enrollment 
in the follow-on course, Advanced Vehicle  
Dynamics, doubled.

Putting Engineers in  
the Front Seat

Caster’s motto, “Engineers in the Front Seat,” 
in many ways reflects the culture of contin-
uous improvement at Chalmers. We want to 
remain at the forefront of engineering edu-
cation, and are always looking for ways to 
improve our programs with new courses and 
assignments.

Caster simulator technology has already 
played a significant role in enhancing our 
curriculum, but the Caster student organiza-
tion has had an even more dramatic effect. 
We have hosted visitors from about 20 differ-
ent universities who have expressed interest 
in setting up a similar program.

Caster has also helped Chalmers’ recruit-
ment efforts. When secondary school stu-
dents visit our campus, we show them the 
simulator. We’ve seen interest among sec-
ondary school visitors; even if they are not 
particularly attracted to automotive technol-
ogy, they still find the coding, virtual reali-
ty, and product development aspects of the  
program appealing.

MATLAB and Simulink at Chalmers

The CDIO approach to engineering education relies heavily on modeling and simulation, and at Chalmers we use MATLAB and 
Simulink for these activities. As a result, for our engineering students, MATLAB is as widely used as pen and paper. MATLAB and 
Simulink are integrated deeply into the mathematics and engineering curriculum at Chalmers. This integration has been enabled by 
a Total Academic Headcount license, which provides Chalmers students with campus-wide access to the tools.

Our adoption of the CDIO approach with MATLAB and Simulink has led to improved learning outcomes and contributed to a wider 
recognition of Chalmers as a top-ranked technical university. Our mechanical engineering program was awarded Centre of Excel-
lence status by the National Swedish Agency for Higher Education and Best Engineering Education by the Swedish engineering 
employers’ organization. After a recent evaluation of higher education, the Swedish government awarded Chalmers’ Mechanical 
Engineering program the highest distinction, an honor that came with additional financial support that helped fund the  
Caster program.

Lastly, we have seen a very positive response 
from industry, including leading automotive 
manufacturers in Sweden. Many company 
representatives have spent time in the Caster  
lounge area talking with students about 
their work with the simulator. We are seeing 
tremendous interest in the engineers that 
Chalmers is producing because our gradu-
ates have not only the skills companies are 
looking for but a deeper understanding of 
engineering principles founded in their ex-
perience with CDIO principles and hands-on 
technology, including the Caster simulator. 
Some of the students involved with Caster 
have already gone on to work for automotive 
companies, and one recently started working 
as a game developer for a company that pro-
duces racing video games.

The Caster Simulator (0:30) 
youtube.com/watch?v=rYuMF_aZhq8 

Modeling a Vehicle Dynamics System 
mathworks.com/vehicle-dynamics- 
example

Chalmers University of Technology 
Integrates MATLAB Throughout Core 
Mathematics Curriculum 
mathworks.com/chalmers 

LEARN MORE

https://www.youtube.com/watch?v=rYuMF_aZhq8
https://www.mathworks.com/help/ident/examples/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/help/ident/examples/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/company/user_stories/chalmers-university-of-technology-integrates-matlab-throughout-core-mathematics-curriculum.html
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An RUL estimation model not only predicts RUL but also provides a 
confidence bound on the prediction. The model inputs are condition 
indicators, features extracted from sensor data or log data whose be-
havior changes in a predictable way as the system degrades or oper-
ates in different modes.

The method used to calculate RUL depends on the kind of data  
available:

•	 Lifetime data indicating how long it took for similar machines to 
reach failure

•	 Run-to-failure histories of machines similar to the one you want 
to diagnose

•	 A known threshold value of a condition indicator that detects 
failure

Predictive Maintenance Toolbox™ provides models for estimating 
RUL from each type of data.

Lifetime Data

Proportional hazard models and probability distributions of compo-
nent failure times are used to estimate RUL from lifetime data. A simple 
example is estimating the discharge time of a battery based on past dis-
charge times and covariates, variables such as the environment in which 
the battery operated (such as temperature) and the load placed on it.

FIGURE 1. Survival function plot. At the end of 75 cycles, the  
probability of a battery’s continuing to operate is 0.1, or 10%. 

The survival function plot in Figure 1 shows the probability that a 
battery will fail based on how long it has been in operation. The plot 
shows, for example, that if the battery is in operation for 75 cycles, it 
has a 90% chance of being at the end of its life time.

Three Ways to Estimate Remaining Useful 
Life for Predictive Maintenance
By Aditya Baru, MathWorks

Remaining useful life (RUL) is the length of time a machine is likely to operate before 
it requires repair or replacement. By taking RUL into account, engineers can schedule 
maintenance, optimize operating efficiency, and avoid unplanned downtime. For this 
reason, estimating RUL is a top priority in predictive maintenance programs. 
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Run-to-Failure Data

If you have run-to-failure data from similar components or different 
components showing similar behavior, you can estimate RUL using 
similarity methods. These methods capture degradation profiles and 
compare them with new data coming in from the machine to deter-
mine which profile the data matches most closely.

In Figure 2, the degradation profiles of historical run-to-failure data 
sets from an engine are shown in blue and the current data from the 
engine is shown in red. Based on the profile the engine most closely 
matches, the RUL is estimated to be around 65 cycles.

Threshold Data

In many cases, run-to-failure data or lifetime data was not record-
ed but you do have information on prescribed threshold values—for 
example, the temperature of a liquid in a pump cannot exceed 160oF 
(71oC) and the pressure must be under 2200 psi (155 bar). With this 
kind of information, you can fit time series models to condition indi-
cators extracted from sensor data such as temperature and pressure, 
which rise or fall over time.

These degradation models estimate RUL by predicting when the con-
dition indicator will cross the threshold. They can also be used with 
a fused condition indicator that incorporates information from more 
than one condition indicator using techniques such as principal com-
ponent analysis.

FIGURE 2. Degradation profiles (blue) based on run-to-failure data.  
The distribution of the stars (or endpoints) of the nearest blue curves 
gives an RUL of 65 cycles.

FIGURE 3. Degradation model for a high-speed bearing. The bearing 
has an estimated RUL of 9.5 days based on its current condition data 
(blue) and the exponential degradation model (red) fit to this data.

Estimating RUL Using Run-to-Failure Data from an Engine  
mathworks.com/similarity-based-example

Estimating RUL of a Battery Using Physical Modeling  
and Kalman Filters  
mathworks.com/degrading-battery-example

Estimating RUL of High-Speed Bearings Using  
Exponential Degradation Models 
mathworks.com/bearing-example

LEARN MORE

Figure 3 shows an exponential degradation model that tracks failure 
in a high-speed bearing used in a wind turbine. The condition indica-
tor is shown in blue. The degradation model predicts that the bearing 
will cross the threshold value in approximately 9.5 days. The region 
shaded in red represents the confidence bounds for this prediction.

Once you have reliable estimates for RUL, you can integrate them into 
dashboards used by operators or incorporate them into alarm systems 
monitored by maintenance teams. Teams can then respond to chang-
es in equipment health as quickly as possible, and without affecting 
operations.

https://www.mathworks.com/help/predmaint/examples/similarity-based-remaining-useful-life-estimation.html
https://www.mathworks.com/help/predmaint/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/predmaint/examples/wind-turbine-high-speed-bearing-prognosis.html
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Mathematical Origins

The mathematical basis for the first version of MATLAB was a series of 
research papers by J. H. Wilkinson and 18 of his colleagues, published 
between 1965 and 1970 and later collected in Handbook for Automatic  
Computation, Volume II, Linear Algebra, edited by Wilkinson and  
C. Reinsch. These papers present algorithms, implemented in Algol 60, for 
solving matrix linear equation and eigenvalue problems. 

EISPACK and LINPACK

In 1970, a group of researchers at Argonne National Laboratory proposed 
to the U.S. National Science Foundation (NSF) to “explore the method-
ology, costs, and resources required to produce, test, and disseminate 
high-quality mathematical software and to test, certify, disseminate, and 
support packages of mathematical software in certain problem areas.” The 
group developed EISPACK (Matrix Eigensystem Package) by translating 
the Algol procedures for eigenvalue problems in the handbook into For-
tran and working extensively on testing and portability. The first version 
of EISPACK was released in 1971 and the second in 1976.

In 1975, four of us—Jack Dongarra, Pete Stewart, Jim Bunch, and myself— 
proposed to the NSF another research project that would investigate meth-
ods for the development of mathematical software. A byproduct would be 
the software itself, dubbed LINPACK, for Linear Equation Package. This 
project was also centered at Argonne.

LINPACK originated in Fortran; it did not involve translation from Algol. 
The package contained 44 subroutines in each of four numeric precisions.

In a sense, the LINPACK and EISPACK projects were failures. We had 
proposed research projects to the NSF to “explore the methodology, costs, 
and resources required to produce, test, and disseminate high-quality 
mathematical software.” We never wrote a report or paper addressing 
those objectives. We only produced software.

Historic MATLAB

In the 1970s and early 1980s, I was teaching Linear Algebra and Numer-
ical Analysis at the University of New Mexico and wanted my students 
to have easy access to LINPACK and EISPACK without writing Fortran 
programs. By “easy access,” I meant not going through the remote batch 
processing and the repeated edit-compile-link-load-execute process that 
was ordinarily required on the campus central mainframe computer.

So, I studied Niklaus Wirth’s book Algorithms + Data Structures = Programs  
and learned how to parse programming languages. I wrote the first  
MATLAB—an acronym for Matrix Laboratory—in Fortran, with matrix 
as the only data type. The project was a kind of hobby, a new aspect of 
programming for me to learn and something for my students to use. There 
was never any formal outside support, and certainly no business plan. 

This first MATLAB was just an interactive matrix calculator. This snapshot 
of the start-up screen shows all the reserved words and functions. There 
are only 71. To add another function, you had to get the source code from 
me, write a Fortran subroutine, add your function name to the parse table, 
and recompile MATLAB.

CLEVE’S CORNER

A Brief History of MATLAB  
By Cleve Moler, MathWorks

The first MATLAB® was not a programming language; it was a simple interactive matrix 
calculator. There were no programs, no toolboxes, no graphics. And no ODEs or FFTs.  
In this Cleve’s Corner, I’ll describe some milestones in the evolution of MATLAB from those  
simple beginnings. 
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Commercial MATLAB

I spent the 1979–80 academic year at Stanford, where I taught the gradu-
ate course in Numerical Analysis and introduced the class to this matrix 
calculator. Some of the students were studying subjects like control theory 
and signal processing, which I knew nothing about. Matrices were central 
to the mathematics in these subjects, though, and MATLAB was immedi-
ately useful to the students.

Jack Little had been in the graduate 
engineering program at Stanford. A 
friend of his who took my course 
showed him MATLAB, and he ad-
opted it for his own work.

In 1983, Little suggested the creation 
of a commercial product based on 
MATLAB. The IBM® PC had been 
introduced only two years earlier. It 
was barely powerful enough to run 
a program like MATLAB, but Little 
anticipated its evolution. He left his 

job, bought a Compaq® PC clone at Sears, moved into the hills behind 
Stanford, and with my encouragement, wrote a new and extended version 
of MATLAB in C. A friend, Steve Bangert, worked on the new MATLAB 
in his spare time.

PC-MATLAB made its debut in December 1984 at the IEEE Conference 
on Decision and Control in Las Vegas. Pro-MATLAB, for Unix work
stations, followed a year later.

Little and Bangert made many important modifications and improve-
ments to Historic MATLAB when they created the new and extended ver-

sion. The most significant were functions, toolboxes, and graphics.

Modern MATLAB

While preserving its roots in matrix mathematics, MATLAB has contin-
ued to evolve to meet the changing needs of engineers and scientists. The 
key developments are shown in the timeline. Here, I’ll elaborate on some 
of them. 

ODEs

The numerical solution of ordinary differential equations has been a vi-
tal part of MATLAB since its commercial beginning. ODEs are also the 
core of Simulink®, the MATLAB companion product for simulation and  
Model-Based Design.

The Van der Pol oscillator is a classical ODE example. 

 

The parameter μ is the strength of the nonlinear damping term.  
When μ = 0, we have the basic harmonic oscillator.

The MATLAB code expresses the oscillator as a pair of first-order  
equations. 

mu = 5;

vdp = @(t,y) [y(2); mu*(1-y(1)^2)*y(2)-y(1)];

tspan = [0 30];

y0 = [0 0.01]';

[t,y] = ode23s(vdp,tspan,y0);

plot(t,y,'.-')

legend({'y','dy/dt'})

xlabel('t')

1984
PC-MATLAB
FFT
Graphics

1985
Pro-MATLAB
Control System Toolbox™

1987
Signal Processing Toolbox™
ODEs

1992
Sparse matrices
Simulink™
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The Van der Pol oscillator, with the parameter μ set to 5, is a mildly stiff 
differential equation. In anticipation, I used the ode23s solver; the ‘s’ in 
the name indicates that it is for stiff equations. In the plot you can see some 
clustering of steps where the solution is varying rapidly. A nonstiff solv-
er would have taken many more steps. A stiff ode solver uses an implicit 
method requiring the solution of a set of simultaneous linear equations at 
each step. The iconic MATLAB backslash operator is quietly at work here.

Data Types

For many years, MATLAB had only one numeric data type: IEEE standard 
754 double-precision floating point, stored in the 64-bit format. As people 
began to use MATLAB for more applications and larger data sets, we pro-
vided more ways to represent data. 

Single Precision and Integer

Support for single-precision arithmetic began in the early 2000s and was 
complete by MATLAB 7 in 2004. Requiring only 32 bits of storage, single 
precision cuts memory requirements for large arrays in half. MATLAB 
does not have declarations, so single-precision variables are obtained by 
executable conversion functions.

MATLAB 7 also introduced three unsigned integer data types, uint8, 
uint16, and uint32; three signed integer data types, int8, int16, 
and int32; and one logical data type, logical.

Sparse Matrices

Sparse matrices were introduced with MATLAB 4 in 1992. They are a 
memory-efficient way to represent very large arrays that have few non
zero values. Only the nonzero elements are stored, along with row indices 
and pointers to the starts of columns. The only change to the outward ap-
pearance of MATLAB is a pair of functions, sparse and full. Nearly 
all the operations apply equally to full and sparse matrices. The sparse 
storage scheme represents a matrix in space proportional to the number 
of nonzero entries, and most of the operations compute sparse results in 
time proportional to the number of arithmetic operations on nonzeros.

Cell Arrays

Cell arrays were introduced with MATLAB 5 in 1996. A cell array is an in-
dexed, possibly heterogeneous collection of MATLAB objects, including 
other cell arrays. Cell arrays are created by curly braces, {}.

Cell arrays can be indexed by both curly braces and smooth parenthe-
ses. With braces, c{k} is the contents of the k-th cell. With parenthe-
ses, c(k)is another cell array containing the specified cells. Think of a  

collection of mailboxes. box(k)is the k-th mailbox. box{k} is the 
mail in the k-th box.

Structures

Structures and associated “dot notation” were introduced in 1996. This 
script for creating a grade book for a small class shows structures and dot 
notation at work.

   Math101.name = ["Alice Jones"; ...

      "Bob Smith"; "Charlie Brown"];

   Math101.grade = ["A"; "B+"; "C"];

   Math101.year = [4; 2; 3];

To call the roll, we need the list of names.

   disp(Math101.name)

       "Alice Jones"

       "Bob Smith"
       "Charlie Brown"

Changing Charlie’s grade involves both structure and array notation.
   Math101.grade(3) = "W";

   disp(Math101.grade)

       "A"

       "B+"
       "W"

Objects

Major enhancements to MATLAB object-oriented programming capabil-
ities were made in 2008. Creating classes can simplify programming tasks 
that involve specialized data structures or large numbers of functions that 
interact with particular kinds of data. MATLAB classes support function 
and operator overloading, controlled access to properties and methods, 
reference and value semantics, and events and listeners.

The MATLAB graphics system is one large, complex example of the  
object-oriented approach to MATLAB programming.

Making MATLAB More Accessible:  
Desktop and Live Editor

The first versions of MATLAB were simple terminal applications. Over 
time we added separate windows for graphics, editing, and other tools. 
These gradually made MATLAB easier to use, especially for users without 
prior programming experience. Two specific features that have had the 

biggest impact are the desktop and the Live Editor.

1996
Single precision
Cell arrays
Structures

1999
Objects

2000
Desktop
LAPACK

2004
Integer data 
Function handles
Parallel computing

1993
Image Processing Toolbox™
Symbolic Math Toolbox™
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Desktop

The MATLAB desktop was introduced in 2000. Here is a screenshot  
showing how it looks today.

Four panels are visible: the current folder viewer (left), the workspace 
viewer (right), the editor/debugger (top center), and the traditional com-
mand window (bottom center). A file viewer and a command history win-
dow can also be included in personalized layouts.

Any panel can be closed or undocked into a standalone window. 

Live Editor

The Live Editor was introduced in 2016 and is still evolving rapidly.  
Descriptive text and MATLAB input, output, and graphics are combined 
in a single interactive document that can be exported to HTML, PDF  

or LaTeX.

Parallel Computing

Parallel Computing Toolbox™ was introduced at the SuperComputing 
conference in 2004. The following year, at SC05, Bill Gates gave the key-
note talk, using MATLAB to demonstrate Microsoft’s entry into high- 
performance computing.

The toolbox supports coarse-grained, distributed memory parallelism by 
running many MATLAB workers on several machines in a cluster or on 
many cores in a single machine. MPI is used for the underlying message 
passing. By far the most popular feature of the toolbox is the parallel for 
loop command, parfor.

The toolbox also supports fine-grained, shared memory parallelism in 
attached graphics processing units (GPUs). Here, the gpuArray array 
gets things started.

Toolboxes

Much of the power of modern MATLAB derives from the toolboxes avail-
able for specialized applications. As of release 2018a, there are 63 of them.

What’s Next?

MATLAB has come a long way since the simple calculator that started it 
all. It is a living ecosystem supporting all aspects of technical computing. 
We will continue to strengthen existing features as we carefully add new 
ones. Our goals are always ease of use, power, and speed.

Cleve’s Corner Blog 
blogs.mathworks.com/cleve

Cleve’s Corner Collection 
mathworks.com/cleves-corner

LEARN MORE

2008
Objects improved

2010
GPUs

2014
New graphics system

2016
Live Editor

2017
Tall arrays and 
categorical arrays

https://blogs.mathworks.com/cleve/
https://www.mathworks.com/company/newsletters/clevescorner.html
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Thanks to low-cost hardware platforms such as Raspberry Pi™, it is now easier than 
ever to prototype image processing algorithms on hardware. Most image processing 
algorithms are computationally intensive, and it can be challenging to run them on an 
embedded platform with acceptable frame rates. While Raspberry Pi is sufficient for 
running simple image processing algorithms, large images and complex algorithms  
are best run on more powerful hardware such as NVIDIA® Jetson.

Run MATLAB Image Processing Algorithms  
on Raspberry Pi and NVIDIA Jetson
By Jim Brock and Murat Belge, MathWorks

Using a chroma key effect as an example, this article describes a sim-
ple workflow for deploying a MATLAB® image processing algorithm 
to embedded hardware. We’ll generate C code from the algorithm 
with MATLAB Coder™, and then use the Run on Hardware utility to 
prototype the algorithm on a Raspberry Pi board. Finally, we’ll move 
the algorithm to an NVIDIA Jetson Tx1 platform to achieve real-time 
performance.

The Chroma Keying Algorithm

Widely used in TV weather reports, movie production, and photo ed-
iting applications, chroma keying is a video processing technique in 
which a foreground subject is shot against a solid color background, 
such as a green screen, that is later replaced by a different scene  
(Figure 1).

The chroma keying algorithm compares each pixel in the image with 
a reference color representing the solid background color. If the color 
of the pixel is close enough to the reference color, the pixel is replaced 
with the corresponding pixel from a pre-selected scene image. Math-
ematically, the chroma keying algorithm can be formulated as:

Where Pfinal(j,k) represents the final pixel value at location (j,k) after 
chroma keying, Poriginal(j,k) is the pixel value corresponding to the 
original image, Pscene(j,k) is the pixel value representing the scene that 
replaces the solid background color, and m(j,k)∈[0,1] is a mask value. 
The mask value m(j,k) should be 1 for foreground pixels and 0 for 
background pixels. A mask value between 0 and 1 provides a smooth 
transition from background to foreground.

The mask value at each pixel is usually computed in the YCbCr color 
space instead of the usual RGB color space. The Y component of the 
YCbCr image represents the luminance component and determines 
how light or dark the image is. Cb and Cr components represent the 
chroma components that can be used to measure similarity to a refer-
ence color. Measuring color similarity using only the Cb and Cr com-
ponents of the image makes the algorithm robust to variations in lu-
minance values in light and dark areas of the solid background color.

To measure the similarity of a pixel color to a reference color, we use 
the squared Euclidian distance in chroma space:
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Finally, we compute the mask value at location (j,k) in the image using 
the following formula:

Where t1 and t2 with t2>t1 represent threshold values to be determined.

MATLAB Implementation

Code excerpts begin on page 39.

Code Except 1 shows the MATLAB implementation of the chroma 
keying algorithm. 

In MATLAB, images are represented as [N, M, 3] arrays of type uint8. 
This means that we’ll need to convert the image data type to 'double' 
before performing mathematical operations. To avoid abrupt transi-
tions from background to foreground, we apply a Gaussian filter to 
the computed mask.

Determining Reference Color and Thresholds

A chroma keying algorithm requires a reference color and thresh-
olds. Using the camera interface in MATLAB Support Package for  
Raspberry Pi, we capture images of the actual scene. We can then 
empirically determine the approximate reference color for the back-
ground and the approximate threshold values (Code Excerpt 2).

The img = snapshot(cam); command plots the image captured 
from Raspberry Pi camera in MATLAB. We use the Data Cursor tool 
in the MATLAB plot to specify the background color (Figure 2).

To determine the thresholds, we run the algorithm in a loop and ad-
just the threshold values (Code Excerpt 3).

When we run the code we get an image shown against the back-
ground we selected (Figure 3).

FIGURE 1. Before-and-after example of chroma keying.

FIGURE 2. The MATLAB Data Cursor tool, used to determine  
background color values.
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FIGURE 3. Top: original image. Bottom: image  
obtained after running the chroma keying algorithm.

Deploying the Chroma Keying Algorithm  
to Raspberry Pi

Before deploying the code, we need to write a loop around the chro-
ma keying algorithm to capture images from a camera and display 
them on a monitor attached to Raspberry Pi (Code Excerpt 4).

matlab.raspi.webcam and matlab.raspi.	  
SDLVideoDisplay are System objects™ in the Run on Hardware 
utility that facilitate use of camera and Raspberry Pi display in a de-
ployment workflow. To compile and run the code, we execute the 
command shown in Code Excerpt 5.

The function runOnHardware creates a MATLAB Coder con-
figuration for Raspberry Pi hardware, generates code for the  
chromaKeyApp.m script, and deploys it. In order to run the al-
gorithm at a reasonable frame rate, the image size can be reduced to 
640x480 or 320x240.

Generating GPU Code

The algorithm is working on the Raspberry Pi, but it is not achiev-
ing the real-time performance we’re looking for. To accelerate the  
algorithm, we will use GPU Coder™ to deploy it to the NVIDIA  
Jetson platform. We need to generate GPU code to take advantage of 

the inherent parallelism in the algorithm. First, we write a wrapper 
main function that uses OpenCV to access a USB camera connected 
to the NVIDIA Jetson. This function will marshal video frames from 
the camera to our chromaKey algorithm and then display the out-
put on the screen.

When generating GPU code, we first create a GPU Coder configura-
tion object, set the GPU parameters to target the NVIDIA Jetson plat-
form, and include our custom main function. We will not compile 
the code on the MATLAB host computer, because we are generating 
code specifically for the NVIDIA Jetson board. We will create a script 
to set up the GPU Coder configuration, input example data, and gen-
erate source code for our application (Code Excerpt 6).

We then run the script in MATLAB to generate CUDA code for the 
chromaKey algorithm.

Deploying a Green Screen Algorithm  
to NVIDIA Jetson

To deploy the generated code to the NVIDIA Jetson, we need to 
package all the required files into the codegen directory, with the  
MATLAB commands shown in Code Excerpt 7.

The next step is to copy the entire generated codegen folder from 
the host machine to the NVIDIA Jetson board. After the files have 
been transferred, we log in to the NVIDIA Jetson directly to build and 
run the application.

Once logged in to the NVIDIA Jetson, we run the  	   
jetson_clocks.sh script provided by NVIDIA to maximize the 
performance of the board, change to the codegen directory con-
taining the generated source code we just transferred, and execute the 
compile command shown in Code Excerpt 8.

Once the executable (chromaKey) has been built, the application is 
run with a USB-connected webcam on the NVIDIA Jetson board with 
the command shown in Code Except 8. The frames-per-second rate 
will be displayed on the output.

Figure 4 shows the output from the NVIDIA Jetson board’s USB cam-
era before and after the green screen effect.

Comparing Raspberry Pi and NVIDIA Jetson  
Performance

The greater parallel processing power of the GPU on the NVIDIA  
Jetson significantly improves the algorithm’s performance. The  
Raspberry Pi achieved approximately 1 frame per second, while the 
NVIDIA Jetson achieved more than 20 frames per second for an 
image size of 1280x720—we gained a more than 20-fold speedup  
without making any modifications or optimizations to our algo-
rithm. We could improve performance even more by optimizing the  
MATLAB algorithm for more efficient GPU code generation.
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function Pfinal = chromaKey(P, Pscene, refColorYCbCr, t1, t2)

Cbref = double(refColorYCbCr(1,1,2));

Crref = double(refColorYCbCr(1,1,3));

PYCbCr = rgb2ycbcr(P);

Cb = double(PYCbCr(:,:,2));

Cr = double(PYCbCr(:,:,3));

d = (Cb - Cbref).̂ 2 + (Cr - Crref).̂ 2;

t1 = t1̂ 2;

t2 = t2^2;

m = zeros([size(d,1) size(d,2)]);

for j = 1:size(m,1)

    for k = 1:size(m,2)

        if d(j,k) > t2

            m(j,k) = 1;

        elseif d(j,k) > t1

            m(j,k) = (d(j,k) - t1) / (t2 - t1);

        end

    end

end

m = repmat(imgaussfilt(m,0.8), [1 1 3]);

Pfinal = uint8(double(P).*m + double(Pscene).*(1-m));

end

CODE EXCERPT 1

r = raspi;

cam = cameraboard;

for k = 1:10

    img = snapshot(cam);

end

CODE EXCERPT 2

Summary

In this example we saw how to rapidly generate code for a MATLAB 
algorithm and deploy it to embedded hardware like the Raspberry 
Pi. We quickly determined that our algorithm was working correct-
ly and needed to be parallelized. Using MATLAB and GPU Coder, 
we generated a highly parallel implementation of the algorithm and 
deployed it to an NVIDIA Jetson board, achieving a significant per-
formance improvement.

Raspberry Pi Programming with MATLAB and Simulink  
mathworks.com/raspberry-pi-programming

NVIDIA GPU Support from GPU Coder  
mathworks.com/nvidia-gpu

LEARN MORE

FIGURE 4. Before-and-after example of applying the  
green screen effect. 
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https://www.mathworks.com/discovery/raspberry-pi-programming-matlab-simulink.html
https://www.mathworks.com/hardware-support/nvidia-gpu.html
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function chromaKeyApp()

    %Chroma keying example for Raspberry Pi hardware.

    w = matlab.raspi.webcam(0,[1280,720]);

    d = matlab.raspi.SDLVideoDisplay;

 

    refColorYCbCr = zeros([1,1,3],'uint8');

    refColorYCbCr(1,1,:) = uint8([0 76 98]);

    data = coder.load('background.mat','bg');

    scene = imrotate(data.bg,90);

    % Main loop

    for k = 1:60

        img = snapshot(w);

        img = chromaKey(img, scene, refColorYCbCr, 28, 29);

        displayImage(d,img);

    end

    release(w);

    release(d);

end

CODE EXCERPT 4

runOnHardware(r,'chromaKeyApp')

CODE EXCERPT 5

% Prepare files for transfer to NVIDIA Jetson TX2

copyfile('Scenery.jpg','codegen/exe/chromaKey/');

copyfile('main _ webcam.cu','codegen/exe/chromaKey/');

copyfile(fullfile(matlabroot,'extern','include',... 

   'tmwtypes.h'),'codegen/exe/chromaKey/');

copyfile('buildAndRun.sh','codegen/exe/chromaKey/');

CODE EXCERPT 7

$> sudo ./jetson _ clocks.sh

$> cd codegen/exe/chromaKey

$> nvcc -o chromaKey *.cu -rdc=true -arch ... 

   sm _ 62 -O3 `pkg-config --cflags ...

   --libs opencv̀  -lcudart

$> ./chromaKey 1

CODE EXCERPT 8

% Create GPU Coder configuration for Jetson TX2
cfg = coder.gpuConfig('exe');
cfg.GpuConfig.MallocMode = 'Unified';
cfg.GpuConfig.ComputeCapability = '6.2';
cfg.GenCodeOnly = 1;
cfg.CustomSource = 'main _ webcam.cu';
 
% Create sample inputs
fg = imread('greenScreenFrame.jpg');
bg = imread('Scenery.jpg');
refColorRGB = [70 130 85]; % RGB light Green
tmpColor = zeros([1,1,3],('uint8');
tmpColor(1,1,:) = uint8(refColorRGB);
refColor = rgb2ycbcr(tmpColor);
threshold1 = 14;
threshold2 = 20;

% Generate CUDA code for chromaKey
codegen -config cfg -args ...
   {fg,bg,refColor,threshold1,threshold2} chromaKey

CODE EXCERPT 6

refColorRGB = zeros([1,1,3],'uint8');

refColorRGB(1,1,:) = uint8([93 177 21]);

refColorYCbCr = rgb2ycbcr(refColorRGB);

t1 = 28;

t2 = 29;

data = coder.load('background.mat','bg');

scene = data.bg;

% Main loop

for k = 1:1000

   img = snapshot(cam);

   imgFinal = chromaKey(img, scene, ...

      refColorYCbCr, t1, t2);

   figure(1),image(img);

   figure(2),image(imgFinal);

   drawnow;

end

CODE EXCERPT 3
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Let’s say you’ve trained a deep learning network to recognize common 
objects. You run the network on some test data and, hopefully, get the 
result you’re looking for: correct classification of the input image.

Have you ever wondered what your deep learning network actually 
looked at to produce that result? For example, if a network classifies 
this image as “French horn,” what part of the image mattered most for 
the classification?

In a paper about visualization techniques for convolutional neural  
networks, MathWorks developer Birju Patel came across the idea of  
occlusion sensitivity. If you block out, or occlude, a portion of the 
image, how does that affect the probability score of the network? And 
how does the result vary depending on which portion you occlude? 
 

See what Birju discovered
blogs.mathworks.com/deep-learning/2017/12/15/ 
network-visualization-based-on-occlusion-sensitivity/

What Does a Deep 
Learning Network

“See”?

https://blogs.mathworks.com/deep-learning/2017/12/15/network-visualization-based-on-occlusion-sensitivity/
https://blogs.mathworks.com/deep-learning/2017/12/15/network-visualization-based-on-occlusion-sensitivity/
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