
Ultra Electronics Holdings plc

The Ultra approach to

Model Based Design for

safety-critical FPGAs
MATLAB Expo 2018

Process Justin Lennox

FPGA David Amor

Ultra Electronics Holdings plc

About Ultra Electronics

PMES

Justin Lennox

MATLAB Expo

SLIDE 3

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

PMES scope of supply
Submarine example

Distribution system

Motor and
drive

systems

Power converters

Electrolyser PSU

Control consoles

Pressuriser
heater controller

Rod control gear

Lube oil inverter

EM signature management,

Corrosion protection &

Active shaft-grounding

Ultra Electronics Holdings plc

The Ultra approach to

Model-Based Design
Applying the MBD process

Justin Lennox

MATLAB Expo

SLIDE 5

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

• From MathWorks®:

“In Model-Based Design, a system model is at the center of the development process,

from requirements development, through design, implementation, and testing.”

• Helps us deal with complexity

• Can test requirements early

• Makes dealing with change easier

• Get things [more] right first time

What and why

Model Based Design

MATLAB Expo

SLIDE 6

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

• Use of MBD

– From requirements to realisable modules

– Increasing cost of bugs

• Supporting functions

– Design assurance for high integrity
systems

– Long term support

Today’s focus

System design process

Requirements

System design

FPGA design

Implementation

Verification

Verification

Verification$$$

MATLAB Expo

SLIDE 7

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Traditional design process
Pros and cons

Pros Cons

Everything is written down Misinterpretation of requirements possible

Documentary evidence easily available Easy to overlook gaps, contradictions or emergent

behaviours in requirements

No expensive tools needed (documents

and spreadsheets)

Bugs may only be identified during hardware testing

(exponential cost)

MATLAB Expo

SLIDE 8

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

• No interpretation of requirements (Executable models describe the requirements and
design)

• Requirements can be tested/verified throughout – problems found early

• Need documentation for design assurance

– Evidence that the system is well defined

– Evidence for rigorous process

• Need documentation for long term support

– Design decisions, rationale

• Need to make information available to everyone on the team

– (Not just those with modelling environment)

Is it the whole answer?

Model Based Design

But…

?

MATLAB Expo

SLIDE 9

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Supporting activities

Modelling environment

• MBD process

• Requirements
verification

• Model flow-down

• Partitioning

Wiki environment

• Functional and physical
documentation trees

• Model and test bench
documentation

• Interface definitions

• Engineering decisions

• FMEAs

• Design review records

Requirements
management tool

• Customer requirements

• Derived requirements

• Route to verification

MATLAB Expo

SLIDE 10

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Requirements management

• Functional customer requirements have test cases assigned

• Pass fail criteria for test cases are provided by customer or derived requirements

• Where possible, simulation test cases should match lab tests

Test cases tie everything together

Customer

Requirements

Requirements
management

tool

RMsis /
DOORS etc.

Functional
requirements

Other
requirements

Test cases

Derived
requirements

MBD testbench

Lab test setup
Pass Fail criteriaRequirement ID

MATLAB Expo

SLIDE 11

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Worked Example

• Requirements captured as a model

• Broken down into functional blocks

and modules

• Need some idea of how the

equipment will be physically built

• Verification takes place at each layer

Motor converter

Layer 5: Control System – FPGA Structural Groups

Motor Controller

FPGA 1

Module ...
Module 2

Module 1

FPGA 2

Module ...
Module 5

Module 4

FPGA 1

Module ...
Module 2

Module 1

HMI

FPGA 1

Module ...
Module 2

Module 1

Sensor Interfaces

Layer 4: Control System – Module Breakdown

Motor Controller

Module ...
Module 2

Module 1

System Controller

Module ...
Module 2

Module 1

Sensor Interfaces

Module ...
Module 2

Module 1

HMI

Module ...
Module 2

Module 1

Auxiliary

Systems
Power Circuit

Layer 2: Converter

Motor

Layer 1: Functional Requirements

Converter

Control

System

Layer 3: Control System

HMI
System

Controller

Motor

Controller

Sensor

Interfaces

System Controller

FPGA 1

Module ...
Module 2

Module 1

FPGA 2

Module ...
Module 5

Module 4

MATLAB Expo

SLIDE 12

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Layer 1 – Requirements model

• Functional requirements turned into a Simulink® model

– Floating point, variable step size

– Use most convenient tools (Simulink, Stateflow, MATLAB code blocks)

– Use referenced model to allow use in different testbenches

• Important to feed back at this stage! Iterate to remove:

– Contradictory requirements

– Undefined area of operation

– Unforeseen behaviours

• Design decisions and assumptions recorded and

brought off by stakeholders as required

• Move equipment with controllers to the next layer

Requirements capture and feedback

Motor

Layer 1: Requirements model

Converter

Customer

Requirements

To normal design /

procurement process

To next layer of

MBD process

MATLAB Expo

SLIDE 13

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Layer 1 – Requirements model

• Testbench built from requirements by independent
engineer

• Tests only affect the external interfaces

• Good idea to automate testbench

– Allows easy regression testing

– Automated report generation

• Source control - critical to have confidence &
transparency in generated results

Testbench

Layer 1: Requirements testbench

Customer

Requirements Test cases

Test report

Motor

Layer 1: Requirements model

Converter

MATLAB Expo

SLIDE 14

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Layer 2: Equipment testbench

Motor

Plant emulator

Auxiliary

Systems
Power Circuit

Layer 2: Converter

Control

System

Layer 2 – Equipment model

• Requirements model broken up into
individual equipment

• Interfaces between equipment in the
system defined at this stage

– Trivial in this example but can be complex
when multiple equipment with controllers
exist in the system!

• Testing can now exercise interfaces
between equipment

• Move control system(s) to next layer

Auxiliary

systems
Power circuit

Layer 2: Equipment model

Control

system

To normal design /

procurement process

To next layer of

MBD process

Motor

Layer 1: Requirements model

Converter

To normal

design /

procurement

process

MATLAB Expo

SLIDE 15

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Auxiliary

systems
Power circuit

Layer 2: Equipment model

Control

system

Layer 3: Control system testbench

Plant emulator

Auxiliary

systems
Power circuit

Motor

Layer 3 - Control system model

• Control system broken out from other

subsystems

• Control system interfaces defined and

tested at this stage

• The control system is tested and

verified

Layer 3: Control system model

HMI

System

controller

Motor

controller

Sensor

interfaces

To next layer of MBD process

MATLAB Expo

SLIDE 16

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Layer 4 – Functional block models

• Set of functional block models created

• Interfaces between each functional block defined

• Functional blocks tested
Layer 4: Control System – Module Breakdown

Motor Controller

Module ...
Module 2

Module 1

System Controller

Module ...
Module 2

Module 1

Sensor Interfaces

Module ...
Module 2

Module 1

HMI

Module ...
Module 2

Module 1

Layer 3: Control system model

HMI

System

controller

Motor

controller

Sensor

interfaces

MATLAB Expo

SLIDE 17

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Layer 5 – Modules assigned to FPGAs

• Interfaces between each
module defined

• Bit interfacing for fixed point
model.

• At some point need to get to
fixed step.

Layer 5: Control System – FPGA Structural Groups

Motor Controller

FPGA 1

Module ...
Module 2

Module 1

FPGA 2

Module ...
Module 5

Module 4

FPGA 1

Module ...
Module 2

Module 1

HMI

FPGA 1

Module ...
Module 2

Module 1

Sensor InterfacesSystem Controller

FPGA 1

Module ...
Module 2

Module 1

FPGA 2

Module ...
Module 5

Module 4

• Modules that make up each functional block assigned to FPGAs

• Model converted to use fixed point maths (if not already done)

Ultra Electronics Holdings plc

FPGA
Development in a MathWorks Environment

With alignment to IEC61508

David Amor

MATLAB Expo

SLIDE 19

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

10 years with MathWorks

1. Tool: Simulink fixed solver discrete step

2. Design: Schematics for Architecture

3. Design: Embedded MATLAB (EML)

4. Design: Stateflow

5. Design: Using Buses

6. Design: Reuse - Model References, libraries

7. Tool: Scripting (Hardware Description Language) HDL generation

8. Tool: Projects and change control with (Subversion) SVN with Jira

9. V&V: Test benching and Model coverage

10.V&V: Co-simulation of generated HDL and Code coverage

The mechanics of FPGA production

MATLAB Expo

SLIDE 20

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Simulink fixed solver discrete step

Ensure consistent

Results when co-simulating

Fixed clock period for synchronous designs

MATLAB Expo

SLIDE 21

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Schematics for Architecture
Architecture describes the signal flow between functional blocks

• Mixture of:

• EML

• Subsystems

• Model references

• Libraries

MATLAB Expo

SLIDE 22

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Embedded MATLAB (EML)

Fixed point data types, Controlling data type bits

The reshape “(:)” operator, Code of practice naming.

Persistence, if isempty(foo), (:), fixdt

MATLAB Expo

SLIDE 23

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Stateflow
Code diversity for IEC61508 – removing common mode failures

Enforced state machine heterogeneity with equivalent functionality.

e.g. Control / Protection relationship: defensive and diverse code.

State flow is synthesizable with caveats

State flow is easier to visualise at simulation time

MATLAB Expo

SLIDE 24

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Using Buses
Tidy schematics and ease of signal maintenance

mat file for bus definition when traversing reference model

Reading / writing to bus from EML:

Help checker by constraining the port to use the bus definition

in the ports and data manager:

EML uses dot notation to drill into busses

e.g. Writing: StartFrame.Char2 = fi(85,0,8,0);

Reading: crc_s = EndFrame.Char7;

MATLAB Expo

SLIDE 25

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Model References, libraries
Reusability and module level testing

Division of architecture allowing reuse and easier testing

Four types of ‘code’

1. None repeating

2. Library

Project specific

e.g. proprietary serial interface

3. Common functional block

standalone function:

multiplier, metafilter etc

4. Design patterns

Common approach to solving a design problem

Design pattern: Multiplex

MATLAB Expo

SLIDE 26

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Model Configuration parameters (cog)

“HDL Code Generation” -> Generate

Automate the generation using a script

that calls “makehdl”

Consistent code output

VHDL Output

Manual HDL generation

MATLAB Expo

SLIDE 27

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Comparison of Matlab code with VHDL output

Resulting VHDL

MATLAB Expo

SLIDE 28

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Projects and change control with (Subversion) SVN with Jira
Integrated change tracking

Simulink Projects:

Primarily projects enable correct path to reference
model / scripts etc

SVN (Subversion):
SVN is a versioning and change control

system that is integrated with MATLAB.

Jira:
Jira is a task tracking system that can be integrated

with SVN.

MATLAB Expo

SLIDE 29

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Test benching and Model coverage
Test metric

V&V (Verification and Validation)

Model coverage is a hint to code coverage - but quicker

Stimulus

Design Under Test (DUT)

Reference

model

Output

comparison

MATLAB Expo

SLIDE 30

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Co-simulation of generated HDL and Code coverage
Simulate generated HDL to confirm clock-by-clock equivalence of model.

Confirmation that VHDL = model & code coverage

Co-simulation

MATLAB Expo

SLIDE 31

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Results: Future

• Rules based auto checking code to reduce code review time

• Investigate “continual integration” compatibility with Simulink

• Leverage toolboxes

– Simulink test toolbox

– Parallel toolbox

– DSP toolbox

– Unknown toolbox still under development…

Plans for Matlab/Simulink

MATLAB Expo

SLIDE 32

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Results: Challenges

• Scopes – not designed for timing diagrams / logic

• Bidirectional port simulation

• Slow simulation – single threading (inherent)

• Functional debug requires systems engineer – shortcoming of model based design but

also an advantage as this means more feedback on system level design.

• Recruiting engineers that have experience with HDL Coder.

• Single source design entry tool

with Matlab/Simulink

MATLAB Expo

SLIDE 33

© 2018 Ultra Electronics: Proprietary DataNot protectively marked

Results: Benefits

• Consistent design-flow from conception to implementation using the same language.

• Reduced rework – Reduced misinterpretation & Unexpected emergent behaviour is

observed earlier

• Its easier to update the FPGA and prove that the system requirements are still met.

Anecdotally:

• Extremely complex motor control system with almost no lab issues.

• Customer revision of requirements within months of project kick off.

of using Matlab/Simulink

Ultra Electronics | PMES
Questions

