
Explore PASSIVE rotations and EULER rates

In this tutorial we're going to look at how the EULER rates of a rigid body can be determined from
the BODY rates of the rigid body. We'll see that there are certain angular poses that result in a matrix
singularity which in turn prevents us from transforming from body rates to Euler rates. This tutorial
demonstrates how PASSIVE rotation matrices can be applied.

 

Why are we doing this ?

Before we can create a 6-DOF model of a vehicle (eg: a quadcopter), we need to get comfortable with
certain concepts. Concepts such as PASSIVE rotation matrices.
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Review the concept of PASSIVE rotation matrices :

Consider the following scenario:

• We have a data point .
• We have a fixed frame called the G-fame.
• We know the (x,y) co-ordinates of the point  in this G-fame and refer to this as .
• We then rotate the B-frame relative to the fixed G-frame.

We now want to know what the co-ordinate of the point  is relative to this new B-frame, ie: what is 
? This scenario is shown in the figure below:

A PASSIVE rotation matrix, converts the co-ordinates of a point expressed in a fixed G-frame, into the
co-ordinates of the same point expressed in the new B-frame.



 

An example of 3 successive PASSIVE rotations

Say we have a fixed G-frame. We start by having our B-frame co-incident with G, and then we start to
rotate the B-frame. Specifically, we're going to apply 3 LOCAL axes rotations which will result in a newly
orientated B-frame. Assume that we apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

We can express a vector defined in the G axis to it's corresponding description in the B axis, using a
sequence of PASSIVE rotation matrices, ie:

  OR, in a more compact form as:

Create a passive rotation object

syms phi theta psi
OBJ_P = bh_rot_passive_G2B_CLS({'D1Z', 'D2Y', 'D3X'}, [phi, theta, psi], 'SYM')

OBJ_P = 
  bh_rot_passive_G2B_CLS with properties:

        ang_units: SYM
    num_rotations: 3
          dir_1st: D1Z
          dir_2nd: D2Y
          dir_3rd: D3X
          ang_1st: [1x1 sym]
          ang_2nd: [1x1 sym]
          ang_3rd: [1x1 sym]



Here are the PASSIVE rotation matrices

R1 = OBJ_P.get_R1

R1 =

R2 = OBJ_P.get_R2

R2 =

R3 = OBJ_P.get_R3

R3 =

Calculate the Direction Cosine Matrix

Recall we earlier said:

bRg = R3 * R2 * R1

bRg =

 

As a "short distraction" .... it's nice to know I can automatically convert this into a MATLAB function.
NOTE: we're specifying the order of the input variables for the function that gets generated.

matlabFunction(bRg,'File','bh_autogen_bRg','Optimize',false, 'Vars', {'phi','theta', 'psi'});
 
% look at the first 6 lines of this autogenerated file



dbtype('bh_autogen_bRg', '1:6')

1     function bRg = bh_autogen_bRg(phi,theta,psi)
2     %BH_AUTOGEN_BRG
3     %    BRG = BH_AUTOGEN_BRG(PHI,THETA,PSI)
4     
5     %    This function was generated by the Symbolic Math Toolbox version 7.0.
6     %    06-Jun-2016 08:05:58

Explore EULER rates

As we apply these local frame rotations, we can represent the angular rates of the rotating frames in
the LOCAL frame co-ordinates. These local frame co-ordinates can then be converted into co-ordinates
expressed in the final B frame. For example, during each of the local axes rotations we can think of
there being a START frame and an END frame:

 

We can express each of the local frame angular velocities into their corresponding components in the
final B frame - and we'll use PASSIVE rotation matrices to do this:

syms phi_dot  theta_dot  psi_dot
 
aRg = R1;
cRa = R2;



bRc = R3;
 
wb_part_1 = bRc * cRa * aRg * [0;0;phi_dot]   % convert local G into B

wb_part_1 =

wb_part_2 = bRc * cRa *       [0;theta_dot;0] % convert local a into B

wb_part_2 =

wb_part_3 = bRc *             [psi_dot;0;0]   % convert local c into B

wb_part_3 =

The total angular velocity expressed in the BODY B frame is therefore

We can now construct the total angular velocity vector expressed in components of the final B frame.

wb = wb_part_1 + wb_part_2 + wb_part_3

wb =

We can write the angular velocity vector  as a MATRIX equation

Let's say that:



We can write a matrix equation of the form A.x = b that describes the relationship between the body
rates  and the Euler rates:

 

syms p q r
 
    x = [phi_dot, theta_dot, psi_dot].'

x =

    
[A,b] = equationsToMatrix(  wb(1)==p, ...
                            wb(2)==q, ...
                            wb(3)==r, ...
                            x)

A =

b =

                        

ATTENTION: The SINGULARITY between BODY rates and EULER rates

From the Matrix equation computed above there is actually an angle that causes the determinant of
A to be ZERO, and hence prevents us from solving for the Euler rates (at that angle) iff we know the
body rates . The angle that causes this problem is the rotation about the local Y axis, ie: the angle .

Specifically it is when . We can see this by first computing the determinant of A .

det_A = simplify( det(A) )



det_A =

And then solving for its roots.

solve( det_A ==0 ) 

ans =

So this tells us that as soon as our vehicle has a pitch angle of 90 degrees, that our chosen Euler angle
sequence simply canNOT be used to convert body rates  into Euler rates. So? So, if you think your

vehicle will pitch by 90 degrees ... AND you're wanting to calculate EULER rates from body rates
.... then you'll need to consider an alternate form of describing your vehicle's pose (eg: quaternions, or
integrating directly the DCM)

Let's compute Euler rates from our body rates

Assuming our vehicle does NOT have a pitch angle of 90 degrees, then we can use the results of the
previous section to calculate the Euler rates from our body rates .

 where

euler_rates = inv(A) * [p; q; r];
euler_rates = simplify(euler_rates)

euler_rates =



 

We can write the Euler rates vector as a MATRIX equation

Similarly to what we did earlier we can write a matrix equation that describes the relationship between
the body rates  and the Euler rates:

     x = [p,q,r].'

x =

 
[K,b] = equationsToMatrix(  euler_rates(1)==phi_dot,   ...
                            euler_rates(2)==theta_dot, ...
                            euler_rates(3)==psi_dot,   ...
                            x)

K =

b =

                         
 
                        



 


