Trim and Linearise the 6-dof model:

In this task we're going to linearise our 6-DOF Simulink vehicle model. We're going to do this because
we'd like to apply some "classical" control design techniques in order to design a control system for the
vehicle. And as you know, classical control techniques require a LINEAR plant model. The workflow that
we'll follow is this:

1. We'll find an operating point for the vehicle. An operating point is characterized by the state(X), the
input(U) and the output(Y). We'll look specifically for an operating point that corresponds to steady
state, ie: where the vehicle's state derivatives are ZERO. This is referred to as finding a TRIMMED
operating point.

2. We'll then use this TRIMMED operating point to calculate a linearised version of the vehicle model.

At the end of this task, we'll show that the following transfer function relationships exist:

OUTPUT Transfer INPUT
Function

1 Y_xe 1682 /s* U_TQ_theta_pitch_Y
2 Y_ye —1682/s* U_TQ_psi_roll_X

3 Y_ze 1.079/s? u_f

4 Y_xe_dot 1682/s3 U_TQ_theta_pitch_Y
5 Y_ye_dot —1682/s3 U_TQ_psi_roll_X

6 Y_ze_dot 1.079/s u_f

7 Y_phi_yaw 89.38/s? U_TQ_phi_yaw _Z

8 Y_theta_pitch 171.5/5s2 U_TQ_theta_pitch_Y
9 Y_psi_roll 171.5/5s2 U_TQ_psi_roll_X

10 Y_phi_dot_yaw_rate 89.38/s U_TQ_phi_yaw_Z

Ll Y_theta_dot_pitch_rate 171.5/s U_TQ_theta_pitch_Y
12 Y_psi_dot_roll_rate 171.5/s U_TQ_psi_roll_X

Bradl ey Horton : 01-Jun-2016, bradl ey. hort on@mt hwor ks. com au

&)

Help

-

Take a moment !

If you're interested in reading about how to linearize a NON linear plant model. Use the MATLAB HELP
and try this simple text search

doc linearize control system

HINT: today we'll be using the functions:

e operspec
* findop
e |inearize



Load some of the model parameters

bh quad params

warning('off"')

% a utility

BH MAKE LINE = @() fprintf('\n %s', repmat('#',1,65) );

Create the operating point specification object.

model
opspec

'bh _linearise 6dof multiple PORTS';
operspec(model) ;

In our operating point specification, note the following:

« Our 4 (green) root level INPORT blocks are the system inputs
e Our 12 (orange) root level OUTPORT blocks are the system outputs
e Qur 12 STATE variable come from our 4 integrator blocks (each integrator block has 3 states)

BH_MAKE LINE();

HHHHHHRH R R R R IR AR AR R R R R R R R

display(opspec)

Operating Specification for the Model bh linearise 6dof multiple PORTS.
(Time-Varying Components Evaluated at time t=0)

States:

(1.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/p,q,r

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(2.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/phi theta psi

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(3.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/ub,vb,wb

spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0
spec: dx = 0, initial guess: 0

(4.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/xe,ye,ze

spec: dx = 0, initial guess: 0

spec: dx = 0, initial guess: 0

spec: dx = 0, initial guess: 0
Inputs

(1.) bh linearise 6dof multiple PORTS/U f
initial guess: 0

(2.) bh linearise 6dof multiple PORTS/U TQ psi roll X
initial guess: 0

(3.) bh linearise 6dof multiple PORTS/U TQ theta pitch Y
initial guess: 0

(4.) bh linearise 6dof multiple PORTS/U TQ phi yaw Z
initial guess: 0

Outputs:



(1.) bh linearise_6dof multiple PORTS/Y xe
spec: none
(2.) bh _linearise_6dof multiple PORTS/Y ye
spec: none
(3.) bh linearise 6dof multiple PORTS/Y ze
spec: none
(4.) bh linearise _6dof multiple PORTS/Y xe dot
spec: none
(5.) bh_linearise _6dof multiple PORTS/Y ye dot
spec: none
(6.) bh linearise 6dof multiple PORTS/Y ze dot
spec: none
(7.) bh_linearise_6dof multiple PORTS/Y phi yaw
spec: none
(8.) bh linearise 6dof multiple PORTS/Y theta pitch
spec: none
(9.) bh _linearise _6dof multiple PORTS/Y psi roll
spec: none
(10.) bh linearise 6dof multiple PORTS/Y phi dot yaw rate
spec: none
(11.) bh linearise 6dof multiple PORTS/Y theta dot pitch rate
spec: none
(12.) bh _linearise 6dof multiple PORTS/Y psi dot roll rate
spec: none

Look for the steady state operating point.

opt
[op,opreport]

findopOptions('DisplayReport', 'off');
findop(model,opspec, opt);

Review our trimmed OPERATING point and NOTE the following:

We have indeed found a steady state operating point because the state derivatives are either zero OR

very small0(1077)

To maintain this steady state pose , our THRUST input needs to supply a value of 9.1. And this makes
sense as it counteracts the force appled by gravity ... which is 9.0958 (==P_veh.mass * 9.81)

In this trimmed pose, ALL of the system outputs are ZERO.

BH_MAKE_ LINE();

B

display(opreport)

Operating Report for the Model bh linearise 6dof multiple PORTS.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States:
(1.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/p,q,r
X: 0 dx: 0 (0)
X: 0 dx: 0 (0)
X: 0 dx: 0 (0)
(2.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/phi theta psi
X: 0 dx: 0 (0)
X: 0 dx: 0 (0)
X: 0 dx: 0 (0)

(3.) bh linearise 6dof multiple PORTS/VEHICLE SYS/bh 6DOF (Euler Angles)/ub,vb,wb



0
0
0

0
0

dx:
dx:
dx: 6.8e-0

dx:
dx:

X
X
X:

(4.) bh linearise 6dof multiple PORTS/VEHICL
X!
X
X

0

dx:

(1.) bh_linearise 6dof multiple PORTS/U_f

u:

9.1

[-Inf Inf]

0 (0)
0 (0)
7 (0)
E SYS/bh _6DOF (Euler Angles)/xe,ye,ze
0 (0)
0 (0)
0 (0)

(2.) bh_linearise_6dof multiple PORTS/U TQ psi roll X

u:

0

[-Inf Inf]

(3.) bh_linearise 6dof multiple PORTS/U TQ theta pitch Y

u:

0

[-Inf Inf]

(4.) bh linearise _6dof multiple PORTS/U TQ phi yaw Z

u:

Outputs:

0

[-Inf Inf]

(1.) bh linearise_6dof multiple PORTS/Y xe

y:

0

[-Inf Inf]

(2.) bh_linearise _6dof multiple PORTS/Y ye

y:

0

[-Inf Inf]

(3.) bh_linearise 6dof multiple PORTS/Y ze

y:

0

[-Inf Inf]

(4.) bh linearise_6dof multiple PORTS/Y xe dot

y:

0

[-Inf Inf]

(5.) bh_linearise _6dof multiple PORTS/Y ye dot

y:

0

[-Inf Inf]

(6.) bh linearise 6dof multiple PORTS/Y ze dot

y:

0

[-Inf Inf]

(7.) bh_linearise_6dof multiple PORTS/Y phi yaw

y:

0

[-Inf Inf]

(8.) bh linearise 6dof multiple PORTS/Y theta pitch

y:

0

[-Inf Inf]

(9.) bh llnearlse 6dof multiple PORTS/Y psi roll

0

[-Inf Inf]

(10.) bh linearise 6dof multiple PORTS/Y_phi dot yaw rate

0

[-Inf Inf]

(11.) bh linearise 6dof multiple PORTS/Y_theta dot pitch rate

0

[-Inf Inf]

(12.) bh linearise 6dof multiple PORTS/Y psi dot roll rate

y:

0

[-Inf Inf]

Linearize the model about this operating point

sys_6dof lin = linearize(model,op);

Note the names of the system inputs and outputs

First note the names of the INPUTS "U" and the OUTPUTS "Y":



G

U f
U_TQ_psi_roll_X _ye_dot
- TQ_ROLL_X
- Y:lhd.a _pitch
. TQ_PITCH_Y -
U_TQ_theta pitch Y ~ - P ¥_psirol
¥_phi_dot_yaw_rate
TQ_YAW_Z7
>

U_TQ_phi_yaw_7Z

¥_theta_dot_pitch_rate

psi_dot .
Y _psi_dot_roll_rate

sys_6dof_lin.InputName

ans =
IUifl
'U TQ psi roll X'
'U TQ theta pitch Y
'U TQ phi yaw Z'

sys 6dof lin.QutputName

ans =
'Y _xe'
IY_ye 1
'Y _ze'
'Y xe dot'
'Y _ye dot'
'Y ze dot'
'Y phi yaw'
'Y theta pitch'
'Y psi roll'

'Y phi dot yaw rate’
'Y theta dot pitch rate'
'Y psi dot roll rate'

So here's how we can INDEX into this:
SOME_TRANSFER FUNCTION = tf(sys 6dof lin('Y theta dot pitch rate', 'U TQ theta pitch Y'))

SOME_TRANSFER FUNCTION =

From input "U TQ theta pitch Y" to output "Y theta dot pitch rate":
171.5

Continuous-time transfer function.



OK, let's look at some transfer functions

Pay particular attention to the following outputs:

e Y_ze dot

e Y _phi_dot_yaw rate

e Y_theta_dot_pitch_rate
e Y _psi_dot roll_rate

: WHY? - because these outputs represent the outputs that we want to control. You'll also
observe that each of these outputs are cuased by a single input.

OUTPUT #1 =Y_xe
tf(sys 6dof lin('Y xe', :))

ans =

From input "U f" to output "Y xe":
0

From input "U TQ psi roll X" to output "Y xe":

0

From input "U TQ theta pitch Y" to output "Y xe":
1682

s™4

From input "U TQ phi yaw Z" to output "Y xe":
0

Continuous-time transfer function.

BH_MAKE_ LINE()

B

OUTPUT #2 =Y _ye
tf(sys 6dof lin('Y ye', :))

ans =

From input "U f" to output "Y ye":
0

From input "U TQ psi roll X" to output "Y ye":
-1682

From input "U TQ theta pitch Y" to output "Y ye":
0



From input "U TQ phi yaw Z" to output "Y ye":
0

Continuous-time transfer function.

BH MAKE LINE()

i

OUTPUT #3 =Y _ze
tf(sys 6dof lin('Y ze', :))

ans =
From input "U_f" to output "Y ze":
1.079

From input "U TQ psi roll X" to output "Y ze":
0

From input "U TQ theta pitch Y" to output "Y_ze":
0

From input "U TQ phi yaw Z" to output "Y ze":
0

Continuous-time transfer function.

BH_MAKE LINE()

B e

OUTPUT #4 =Y_xe_dot
tf(sys 6dof lin('Y xe dot', :))

ans =

From input "U f" to output "Y xe dot":
0

From input "U TQ psi roll X" to output "Y xe dot":

0

From input "U TQ theta pitch Y" to output "Y xe dot":
1682

s™3

From input "U TQ phi yaw Z" to output "Y xe dot":
0

Continuous-time transfer function.

BH_MAKE_ LINE()



HHHHHHRH R R R R R R HH AR R R R R R R R R

OUTPUT #5 =Y_ye_dot
tf(sys 6dof lin('Y ye dot', :))

ans =

From input "U f" to output "Y_ye dot":
0

From input "U TQ psi roll X" to output "Y ye dot":
-1682

From input "U TQ theta pitch Y" to output "Y ye dot":
0

From input "U TQ phi yaw Z" to output "Y ye dot":
0

Continuous-time transfer function.

BH_MAKE_LINE()

W bbb bbbt A

OUTPUT #6 = Y_ze_dot

ATTENTION: note how the Y_ze_dot output is only dependednt on the U_f input

tf(sys 6dof lin('Y ze dot', :))

ans =
From input "U f" to output "Y ze dot":
1.079

From input "U TQ psi roll X" to output "Y ze dot":
0

From input "U TQ theta pitch Y" to output "Y ze dot":
0

From input "U TQ phi yaw Z" to output "Y ze dot":
0

Continuous-time transfer function.

BH_MAKE_ LINE()

HHHHHHHH R R R R R R



OUTPUT #7 =Y _phi_yaw
tf(sys 6dof lin('Y phi yaw', :))

ans =

From input "U f" to output "Y phi yaw":
0

From input "U TQ psi roll X" to output "Y phi yaw":
0

From input "U TQ theta pitch Y" to output "Y phi yaw":
0

From input "U TQ phi yaw Z" to output "Y phi yaw":
89.38

Continuous-time transfer function.

BH_MAKE LINE()

HHHHHHRH R R R R IR HHHHH AR AR R R R R R R R

OUTPUT #8 = Y_theta_pitch
tf(sys _6dof lin('Y theta pitch', :))

ans =

From input "U f" to output "Y theta pitch":
0

From input "U TQ psi roll X" to output "Y theta pitch":
0

From input "U TQ theta pitch Y" to output "Y theta pitch":
171.5

From input "U TQ phi yaw Z" to output "Y theta pitch":
0

Continuous-time transfer function.

BH_MAKE_LINE()

R

OUTPUT #9 =Y _psi_roll
tf(sys 6dof lin('Y psi roll', :))

ans =



From input "U f" to output "Y _psi roll":
0

From input "U TQ psi roll X" to output "Y psi roll":
171.5

From input "U TQ theta pitch Y" to output "Y psi roll":
0

From input "U TQ phi yaw Z" to output "Y psi roll":
0

Continuous-time transfer function.

BH MAKE LINE()

i

OUTPUT #10 = Y_phi_dot_yaw_rate

ATTENTION: note how the Y_phi_dot_yaw_rate output is only dependednt on the
U_TQ_phi_yaw_Z input

tf(sys 6dof lin('Y phi dot yaw rate', :))

ans =

From input "U f" to output "Y phi dot yaw rate":
0

From input "U TQ psi roll X" to output "Y phi dot yaw rate":
0

From input "U TQ theta pitch Y" to output "Y phi dot yaw rate":
0

From input "U TQ phi yaw Z" to output "Y phi dot yaw rate":
89.38

Continuous-time transfer function.

BH_MAKE LINE()

B

OUTPUT #11 = Y_theta_dot_pitch_rate

ATTENTION: note how the Y_theta_dot_pitch_rate output is only dependednt on the
U TQ theta pitch_Y input



tf(sys 6dof lin('Y theta dot pitch rate', :))

ans =

From input "U f" to output "Y theta dot pitch rate":
0

From input "U TQ psi roll X" to output "Y theta dot pitch rate":
0

From input "U TQ theta pitch Y" to output "Y theta dot pitch rate":
171.5

From input "U TQ phi yaw Z" to output "Y theta dot pitch rate":
0

Continuous-time transfer function.

BH_MAKE LINE()

HHHHHHRH R R R R R HHHHH AR AR R R R R R R R

OUTPUT #12 = Y_psi_dot_roll_rate

ATTENTION: note how the Y_psi_dot_roll_rate output is only dependednt on the
U_TQ_psi_roll_Xinput

tf(sys 6dof lin('Y psi dot roll rate', :))

ans =

From input "U_f" to output "Y_psi dot roll rate":
0

From input "U TQ psi roll X" to output "Y psi dot roll rate":
171.5

From input "U TQ theta pitch Y" to output "Y psi dot roll rate":
0

From input "U TQ phi yaw Z" to output "Y psi dot roll rate":
0

Continuous-time transfer function.

BH MAKE LINE()

e o

Where to from here ?



In the next task we're going to design 3 SISO controllers:

« Altitude (ie: Z) control
* PITCH angle control (NB: the ROLL controller will be identical)
¢ YAW angle control

For each of these controllers the structure that we'll use will involve 2 proportional controllers configured
in a cascade loop. The inner loop is the velocity loop and the outer loop is the position loop. This control
structure is shown below:

P_CONT_too P_CONT LTI System

TQ
P P TF_PITCHdot_from_UTQ_pitch (1)
O o Ta _ otem e e ‘7 VEL
POS_CMD POS

Saturation

VEL

Note we can also represent this structure as:

PITCH_CONTROL_SYSTEM

POS_CMD

.—DANG CMD
- LTl System1

VEL
B ANG”MEAS TQ _/ TF_PITCHdot_from_UTQ_pitch >
POS

Saturation1
|-> ANG_dot MEAS

To design each controller we'll design the INNER velocity loop controller first, and then we'll design the
OUTER positional controller. The linear plants for each of these 3 control design tasks are:

0=
el
o
@

OUTPUT Transfer INPUT

Function
Y_ze dot 1.079/s U_f
Y_phi_dot_yaw_rate 89.38/s U_TQ_phi_yaw_Z
Y_theta_dot_pitch_rate 171.5/s U_TQ_theta_pitch_Y

The transfer function for the Z rate

clc
tf(sys_6dof lin('Y ze dot', 'U f'))
ans =
From input "U f" to output "Y ze dot":
1.079

Continuous-time transfer function.



The transfer function for the YAW rate
tf(sys 6dof lin('Y phi dot yaw rate', 'U TQ phi yaw Z'))

ans =

From input "U TQ phi yaw Z" to output "Y phi dot yaw rate":
89.38

Continuous-time transfer function.
The transfer function for the PITCH rate
tf(sys 6dof lin('Y theta dot pitch rate', 'U TQ theta pitch Y'))

ans =

From input "U TQ theta pitch Y" to output "Y theta dot pitch rate":
171.5

Continuous-time transfer function.



