Explore PASSIVE rotations which Transform a G vec into a B vec

In this tutorial, we're going to explore the concept of PASSIVE rotation matrices.

Ty P VB y_G P
""""""""""" . .
T Xp
EI,,,,}:
—p X 0 | > xG
[xp] _ [cos(f) sin(B) . [xp]
Yelp — [—sin(8) cos(8) yel,
Bp — BRG + Gp

Why are we doing this ?

» Rotation matrices are used heavily in Mechanical, Robotic and Aeronautical engineering applications.
» Often students can get confused when they read the term "Rotation matrix". In many/most cases, this
confusion can be reduced by emphasizing a rotation matrix as being either PASSIVE or ACTIVE.

Bradl ey Horton : O1-Mar-2016, bradl ey. horton@rat hwor ks. com au

Introduction:

Consider the following scenario:

We have a data point P.
*+ We have a fixed frame called the G-fame.

* We know the (x,y) co-ordinates of the point P in this G-fame and refer to this as “P.
* We then rotate the B-frame relative to the fixed G-frame.

We now want to know what the co-ordinate of the point P is relative to this new B-frame, ie: what is P
? This scenario is shown in the figure below:

W Y P VB yF P
""""""""""" H .
T8 Xp
EL,,,":
— X 8 m| > XG
[xp] _ [cos(f) sin(B) . [Xp]
Yrlg = |—sin(8) cos(8) vel,
Bp =B+ p

A PASSIVE rotation matrix BRG, converts the co-ordinates of a point expressed in a fixed G-frame, into
the co-ordinates of the same point expressed in the new B-frame.

Ve
YB A p VB Ve P
------------ u .
1gh, 'n' 0
. XB 9% ,xp
Lo
. \ . : o
| \\ 0
o LY : 1.‘ no
g Dooo; \ r’éb-ao" g c\'oé ;_o
o > X i L.
o G > » X
[xp] [cos(8) Siﬂ(ﬁ)] [JCP]
= E
Yplg —sin(f) cos(8) Yplg
A concrete example - part 1:
3
Consider the specific case of ¢p _ | 1 | and a B-frame rotated by 60 degrees relative to Z axis of the
0
G-frame
gP = [3,1,0]";
alpha = 60*pi/180;
bRg = [cos(alpha), sin(alpha) 0;

-sin(alpha), cos(alpha), 0O;
0, 0, 11;

So now apply the passive rotation matrix and calculate ?P

bP = bRg * gP

bP =
2.36602540378444
-2.09807621135332

0

A concrete example - part 2:

We can implement the formula for this passive rotation matrix BRG into a MATLAB class called

<bh_rot passi ve_&B_CLS>. This will allow us to reuse the formula over and over again. So
repeating the previous example we have:

gP =[3, 1, 0]";

0BJ PR = bh rot passive G2B CLS({'D1z'}, alpha, 'RADIANS');
R = 0BJ PR.get R1();

bP =R * gP

bP =

2.36602540378444
-2.09807621135332
0

An example of 3 successive PASSIVE rotations

In the previous example we considered just 1 rotation. Consider now the scenario of performing a
sequence of rotations. As before, say we have a fixed G-frame. We start by having our B-frame co-
incident with G, and then we start to rotate the B-frame. Specifically, we're going to apply 3 LOCAL
axes rotations which will result in a newly orientated B-frame. Assume that we apply these 3 successive
rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis (¢), aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis (), aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis (¥), aka ROLL

We can express a vector defined in the G axis to it's corresponding description in the B axis, using a
sequence of PASSIVE rotation matrices, ie:

Bv = R3X(y,) R2Y(8,) x R1Z(d,) x Gy
OR, in a more compact form as:

Bv=PR, x ‘v

Let's explore:

Let's explore these 3 passive rotations using the MATLAB class <bh_r ot _passi ve_&B_CLS> that
we used earlier. Note in the code below how we are stating that the 1st rotation ¢ is about the local Z
axis (ie: D1Z), and the second rotation 6 is then around the local Y axis (ie: D2Y), and the 3rd rotation

Y is then around the local X axis (ie: D3X). In the example below we're alos going to use "symbolic"
variables for our rotation angles.

0BJ B = bh rot passive G2B CLS({'D1z', 'D2Y', 'D3X'}, [sym('phi'), sym('theta'), sym('psi')],

0BJ B =
bh rot passive G2B CLS with properties:

ang units: SYM
num_rotations: 3

dir 1st: D1Z
dir 2nd: D2Y
dir 3rd: D3X
ang 1lst: [1x1 sym]
ang 2nd: [1x1 sym]
ang 3rd: [1x1 sym]

The symbolic PASSIVE rotation matrices
R1 = 0BJ B.get R1

R1

cos ((p) sin(go) 0
—-ﬁn(@) cos(@) 0
1

R2 = OBJ B.get R2

R2 =

cos (6) 0 - sin(@)
0 1 0
sin(@) 0 cos(@)

R3 = 0BJ B.get R3

=1 0 0
0 cos(w) ﬁn(w)
0 —-mn(¢) cos(w)

Here are some compound PASSIVE rotation matrices - part 1

R2R1 = 0BJ B.get R2R1

R2R1 =

cos(¢) cos(8) cos(6)sin(p) - sin(0)
- sin ((p) cos((p) 0
cos(¢) sin(@) sin(¢)sin(8) cos(6)

Note that "R2R1" is the same thing as "R2*R1":

diff mat = R2R1 - R2*R1 % this should be zero
diff mat =

HH

Here are some compound PASSIVE rotation matrices - part 2

o O O
o O O
o O O

R3R2R1 = 0BJ B.get R3R2R1

cos(¢) cos(6) cos(8) sin(¢) - sin(6)
cos(¢p) sin(yp) sin(6) - cos (1) sin(¢p) cos(¢) cos(1) + sin(¢) sin () sin(0) cos(8) sin(yh)
sin(¢) sin(y) + cos(¢) cos(1) sin(8) cos () sin(¢) sin(0) - cos(¢p) sin(y) cos(y) cos(8)

Note that "R3R2R1" is the same thing as "R3* R2* R1":

diff mat B = R3R2R1 - R3*R2*R1 % this should be zero
diff mat B =

HH

Here's the PASSIVE rotation matrixBRG

o O O
o o O |
o O O

bRg

R3*R2*R1

bRg =

cos(¢p) cos(0) cos(0) sin(¢p) - sin(0)
cos(go) sin(v,b) sin(@) - cos(r,b) sin ((p) cos ((p) cos (¢) + sin(q)) sin (z,b) sin(@) cos (9) sin (v,b)
sin(¢) sin () + cos(¢p) cos(y) sin(8) cos(yp) sin(¢) sin(8) - cos(¢) sin(yp) cos(y) cos(6)

Transform a vector in G, into its components in B

vG = [1,0,01";

bRg = 0BJ B.get R3R2RI;
vB = bRg*vG

VB =

cos(¢) cos(0)
cos(go) sin(v,b) sin(@) - cos(r,b) sin ((p)
sin ((p) sin(z/)) + cos (go) COS(I/)) sin (9)

Transform a vector in G, into its components in B - alternate syntax

vG
vB_2nd_approach

[1,0,0]";
0BJ B.apply R3R2R1(vG);

Note what the "appl y_R3R2R1(vG " method does the same thing as "R3R2R1 * vG'
diff vB = vB - vB 2nd approach % this should be zero

diff vB =

0
0
0

Next steps:

If you found this tutorial interesting, there are 2 others that you may want to look at:

 bhLIVE_TUT rot_passive G2B_example_3 euler_rates CONCEPT.mlx : In this tutorial we see an
application of PASSIVE rotation matrices that comes from the modelling of aerial vehicles.

 bhLIVE_TUT rot_ ACTIVE_B2G_example_1 CONCEPT.mIx : In this tutorial we introduce the
concept of the ACTIVE rotation matrix.

