SISO control design:

In this task we're going to design 3 SISO controllers for our 6-DOF vehicle model. The controllers are:

» Altitude (ie: Z) control
* YAW angle control
* PITCH angle control (NB: the ROLL controller will be identical)

The design requirements for this task are:

Label Variable to be controlled STEP response Gain
90% Rise time margin

(secs) (dB)
Altitude control | Y_ze (m) 2.5 60
Y_ze_dot (m/sec) 0.3 60
Yaw control Y _phi_yaw (rad) 1.5 60
Y_phi_dot_yaw_rate (rad/s) 0.25 60
Pitch control Y _theta_pitch (rad) 0.5 60
Y _theta_dot_pitch_rate (rad/s) 0.25 60
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Prerequisite:

Before commencing this task you need to run the bh_task find _trimand_|i nearise. m x script
to create required variables (eg: transfer function objects) that are used in this control design task.

assert(l==exist('sys 6dof lin'), 'you have NOT run the ***bh task find trim and linearise***')

Our SISO controller structure:

For each of these SISO controllers the structure that we'll use will involve 2 proportional controllers
configured in a cascade loop. The inner loop is the velocity loop and the outer loop is the position loop.
This control structure is shown below:
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Note we can also represent this structure as:
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To design each controller we'll design the INNER velocity loop controller first, and then we'll design the
OUTER positional controller. The linear plants for each of these 3 control design tasks are:
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OUTPUT Transfer INPUT

Function
Y_ze dot 1.079/s U_f
Y_phi_dot_yaw_rate 89.38/s U_TQ_phi_yaw_Z
Y_theta_dot_pitch_rate 1715/s U_TQ_theta_pitch_Y

Create the 3 linear plant transfer functions:

TF_ZEdot_from_Uf
TF_YAWdot from UTQ yaw
TF _PITCHdot from UTQ pitch

tf(sys 6dof lin('Y ze dot', 'U f'));
tf(sys 6dof lin('Y phi dot yaw rate', 'U TQ phi yaw Z'));
tf(sys 6dof lin('Y theta dot pitch rate', 'U TQ theta pitch Y'));

Echo these:

[TF_ZEdot from Uf, TF YAwWdot from UTQ yaw, TF PITCHdot from UTQ pitch ]

ans =

From input "U_f" to output "Y theta dot pitch_rate":
1.079

From input "U TQ phi_yaw Z" to output "Y_theta dot pitch rate":
89.38

From input "U TQ theta pitch Y" to output "Y theta dot pitch rate":
171.5

Continuous-time transfer function.

Now do the design:

Open the Simulink model bh_do_CONTROL_DESI GN_vi a_PI D TUNER. sl x and consider the
subsystem called "INITIAL_PITCH_CONTROL_SYSTEM?". Launch the PID tuner app for each of the



green P blocks and design according to the requirements. NOTE: although all of our designs are just "P-
controllers”, the tuner app is called the "PID tuner" - hey, no big deal !

open_system('bh_do CONTROL DESIGN via PID TUNER.slx')
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And you can repeat this design for the YAW and ALTITUDE controllers. The final designs that | have
made are also shown in the bh_do_CONTROL_DESI GN_vi a_PI D_TUNER. sl x model, and they are:

FINAL_DES_ALTITUDE_CONTROL_SYSTEM FINAL_DES_YAW_CONTROL_SYSTEM FINAL_DES_PITCH_CONTROL_SYSTEM
Y ze_cmp 3 yaw_cmMD ) N ANG_cMD
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But what about the NON-linear 6-DOF model ?

The controllers that we've just designed used a linear approximation of our 6-DOF model.

SO we now need to try the controllers with our NON-linear model. Open the model

bh_test LI NCONT_on_NONLI N _pl ant. sl x and see how the controllers performed - here we apply
STEPS and pulses of:

e Ze=1(m)
* Pitch = 30 (degrees)
* YAW =60 (degrees)
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