
Explore ACTIVE rotations applied to a BODY-FIXED frame

In this tutorial, we're going to explore the concept of ACTIVE rotation matrices.

Why are we doing this ?

• Rotation matrices are used heavily in Mechanical, Robotic and Aeronautical engineering applications.
• Often students can get confused when they read the term "Rotation matrix". In many/most cases, this

confusion can be reduced by emphasizing a rotation matrix as being either PASSIVE or ACTIVE.

Bradley Horton : 01-Mar-2016, bradley.horton@mathworks.com.au

Introduction:

Consider the scenario where we have an original data point and we want to rotate this data point

to a new location called . This scenario is shown below. We can think of this task in the following

way:

• Imagine that we start with and that this point is fixed ("glued") to a co-ordinate frame called the B-

frame.
• We know the (x,y) co-ordinates of the point in this B-fame and refer to this as
• We then rotate the B-frame relative to a fixed frame called the G-frame. Note that because point P is

"glued" to the B-frame, the co-ordinates do not change while the B-frame is rotating.

We now want to now what the final co-ordinate of the point is relative to the fixed G-frame, ie: what is

 ? This is also shown below:

An ACTIVE rotation matrix , allows us to calculate the position of the new point relative to the G-

frame, ie: . An example of a matrix equation that defines this ACTIVE rotation is defined below:

A concrete example - part 1:

Consider the specific case of and a B-frame rotated by 45 degrees relative to Z axis of the

G-frame:

bP = [1,0,0]';
alpha = 45*pi/180;

gRb = [cos(alpha), -sin(alpha), 0;
 sin(alpha), cos(alpha), 0;
 0, 0, 1];

gP = gRb * bP

gP =
 0.707106781186548
 0.707106781186547
 0

A concrete example - part 2:

We can implement the formula for this ACTIVE rotation matrix into a MATLAB class called

<bh_rot_active_B2G_CLS>. This will allow us to reuse the formula over and over again. So
repeating the previous example we have:

bP = [1, 0, 0]';
alpha = 45*pi/180;
OBJ_AR = bh_rot_active_B2G_CLS({'D1Z'}, alpha, 'RADIANS');
gRb = OBJ_AR.get_active_R1();

gP = gRb * bP

gP =
 0.707106781186548
 0.707106781186547
 0

Recall our discussion on PASSIVE rotations

There is a special relationship between PASSIVE and ACTIVE rotation matrices, so let's first review
what we know about PASSIVE rotation matrices. Say we have a fixed G-frame. We start by having our
B-frame co-incident with G, and then we start to rotate the B-frame. Specifically, we're going to apply 3
LOCAL axes rotations which will result in a newly orientated frame called the B-frame. Assume that we
apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

We can express a vector defined in the G-frame to it's corresponding description in the B-frame, using a
sequence of PASSIVE rotation matrices, ie:

 OR, in a more compact form as: Where is the PASSIVE rotation matrix.

Now define what we mean by ACTIVE rotations

Continuing on from the previous section, we can now write:

 = * * *

 = * * *

 = * * *

If we now define the following ACTIVE rotation matrices:

1. a_R1Z() = =

2. a_R2Y() = =

3. a_R3X() = =

Then we can write:

 = a_R1Z() * a_R2Y() * a_R3() *

Or in a more compact form: Where is the ACTIVE rotation matrix.

It should be clear that :

Let's explore these ACTIVE rotations

Let's create on of those active rotation objects that we used earlier. We'll create an object that
implmenets the sequence:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

OBJ_A = bh_rot_active_B2G_CLS({'D1Z', 'D2Y', 'D3X'}, [sym('phi'), sym('theta'), sym('psi')], 'SYM')

OBJ_A =
 bh_rot_active_B2G_CLS with properties:

 ang_units: SYM
 num_rotations: 3
 dir_1st: D1Z
 dir_2nd: D2Y
 dir_3rd: D3X
 ang_1st: [1x1 sym]
 ang_2nd: [1x1 sym]
 ang_3rd: [1x1 sym]

The symbolic ACTIVE rotation matrices

aR1 = OBJ_A.get_active_R1

aR1 =

aR2 = OBJ_A.get_active_R2

aR2 =

aR3 = OBJ_A.get_active_R3

aR3 =

Here are some compound ACTIVE rotation matrices - part 1

aR1R2 = aR1*aR2

aR1R2 =

Note that "aR1 * R2" is the same thing as "get_active_R1R2()":

diff_mat = aR1R2 - OBJ_A.get_active_R1R2 % this should be a ZERO matrix

diff_mat =

Here are some compound ACTIVE rotation matrices - part 2

aR1R2R3 = aR1*aR2*aR3

aR1R2R3 =

Note that "aR1 * R2 * aR3" is the same thing as "get_active_R1R2R3()":

diff_mat = aR1R2R3 - OBJ_A.get_active_R1R2R3 % this should be a ZERO matrix

diff_mat =

Here is the ACTIVE rotation matrix

Here is the compound ACTIVE rotation matrix:

gRb = aR1*aR2*aR3

gRb =

Recall the PASSIVE rotation matrix

Note how the inverse of the ACTIVE is just the PASSIVE which we computed during our

discussion on PASSIVE rotations

bRg = inv(gRb);
simplify(bRg)

ans =

Let's rotate an aeriel vehicle:

Now let's apply these ACTIVE rotation matrices to a "vehicle":

% this will be the "toy" system that we'll rotate in space
veh_OBJ = bh_vehicle_CLS()

veh_OBJ =
 bh_vehicle_CLS with properties:

 FaceAlpha: 1
 gRb: [3x3 double]
 XL: [-2 2]
 YL: [-2 2]
 ZL: [-2 2]
 X_b_col: [18x1 double]
 Y_b_col: [18x1 double]
 Z_b_col: [18x1 double]
 X_g_col: [18x1 double]
 Y_g_col: [18x1 double]
 Z_g_col: [18x1 double]

Show the vehicle in it's original pose

figure();
hax(1) = subplot(2,2,1); veh_OBJ.plot_3D(hax(1));
hax(2) = subplot(2,2,2); veh_OBJ.plot_XY(hax(2));
hax(3) = subplot(2,2,3); veh_OBJ.plot_XZ(hax(3));
hax(4) = subplot(2,2,4); veh_OBJ.plot_YZ(hax(4));

Define the ACTIVE rotation sequence and angles

We'd like to subject the vehicle to a series of rotations applied to a body fixed co-ordinate frame
attached to the vehicle. Assume that we apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

degs_yaw = 90;
degs_pitch= 30;
degs_roll = 60;

arot_OBJ = bh_rot_active_B2G_CLS({'D1Z','D2Y','D3X'}, ...
 [degs_yaw, degs_pitch, degs_roll], ...
 'DEGREES')

arot_OBJ =
 bh_rot_active_B2G_CLS with properties:

 ang_units: DEGREES
 num_rotations: 3
 dir_1st: D1Z
 dir_2nd: D2Y
 dir_3rd: D3X
 ang_1st: 90
 ang_2nd: 30
 ang_3rd: 60

Now apply this ACTIVE rotation sequence to the vehicle

% get each of the active rotation matrices
aR1 = arot_OBJ.get_active_R1();
aR2 = arot_OBJ.get_active_R2();
aR3 = arot_OBJ.get_active_R3();

% chain them together in the correct ACTIVE order
aR1R2R3 = aR1 * aR2 * aR3;

% get the B frame geometry data of the vehicle
[X,Y,Z] = veh_OBJ.get_B_XYZ();
v_mat = [X(:), Y(:), Z(:)]'; % a 3xN matrix

% now apply the complete ACTIVE rotation matrix to our vehicle data
new_XYZ = aR1R2R3 * v_mat;

% store this new rotated vehicle data
veh_OBJ = veh_OBJ.set_G_XYZ(new_XYZ(1,:)', new_XYZ(2,:)', new_XYZ(3,:)');

% store the DCM so that we can draw the body fixed frame arrows
veh_OBJ.gRb = arot_OBJ.get_active_R;

% plot the new rotated vehicle
figure();
hax(1) = subplot(2,2,1); veh_OBJ.plot_3D(hax(1));

hax(2) = subplot(2,2,2); veh_OBJ.plot_XY(hax(2));
hax(3) = subplot(2,2,3); veh_OBJ.plot_XZ(hax(3));
hax(4) = subplot(2,2,4); veh_OBJ.plot_YZ(hax(4));
title(hax(1), 'THE FINAL pose after active rotations')

REPEAT what we just did ... BUT let's show the progressive rotations

veh_OBJ = bh_vehicle_CLS();
figure();
clear hax

% Here's the vehicle in its ORIGINAL pose
hax(1) = subplot(2,2,1); veh_OBJ.plot_3D(hax(1));
title(hax(1),'Initial VEHICLE pose')

% apply the 1st active rotation
clear veh_OBJ
veh_OBJ = bh_vehicle_CLS(); % ORIG pose is starting point
V_3xN = veh_OBJ.get_B_XYZ_3xN(); % get current vehicle data
new_XYZ = arot_OBJ.apply_active_R1(V_3xN); % apply the rotation
veh_OBJ = veh_OBJ.set_G_XYZ(new_XYZ(1,:)', new_XYZ(2,:)', new_XYZ(3,:)');
gRb = arot_OBJ.get_active_R1(); % get and store the DCM
veh_OBJ.gRb = gRb;
% update the vehicle's PLOT
hax(2) = subplot(2,2,2); veh_OBJ.plot_3D(hax(2));
str = sprintf('VEHICLE after yaw R1Z(\\phi = %d^o)',degs_yaw);
title(hax(2),str)

% apply the 2nd active multiplication
clear veh_OBJ
veh_OBJ = bh_vehicle_CLS(); % ORIG pose is starting point
V_3xN = veh_OBJ.get_B_XYZ_3xN(); % get current vehicle data
new_XYZ = arot_OBJ.apply_active_R1R2(V_3xN); % apply the rotation
veh_OBJ = veh_OBJ.set_G_XYZ(new_XYZ(1,:)', new_XYZ(2,:)', new_XYZ(3,:)');
gRb = arot_OBJ.get_active_R1R2();
veh_OBJ.gRb = gRb;
% update the vehicle's PLOT
hax(3) = subplot(2,2,3); veh_OBJ.plot_3D(hax(3));
str = sprintf('VEHICLE after pitch R2Y(\\theta = %d^o)',degs_pitch);
title(hax(3),str)

% apply the 3rd active multiplication
clear veh_OBJ
veh_OBJ = bh_vehicle_CLS(); % ORIG pose is starting point
V_3xN = veh_OBJ.get_B_XYZ_3xN(); % get current vehicle data
new_XYZ = arot_OBJ.apply_active_R1R2R3(V_3xN); % apply the rotation
veh_OBJ = veh_OBJ.set_G_XYZ(new_XYZ(1,:)', new_XYZ(2,:)', new_XYZ(3,:)');
gRb = arot_OBJ.get_active_R1R2R3();
veh_OBJ.gRb = gRb;
% update the vehicle's PLOT
hax(4) = subplot(2,2,4); veh_OBJ.plot_3D(hax(4));
str = sprintf('VEHICLE after roll R3X(\\psi = %d^o)',degs_roll);
title(hax(4),str)

Next steps:

Animating what we've just done. If you evaluate the following code in the MATLAB command window,
you'll see an animation of our vehicle:

% Create an ACTIVE rotation object

degs_yaw = 90;
degs_pitch= 30;
degs_roll = 60;
arot_OBJ = bh_rot_active_B2G_CLS({'D1Z','D2Y','D3X'}, ...
 [degs_yaw, degs_pitch, degs_roll], ...
 'DEGREES');
% create a figure
figure();
hax = axes;
desc_str = arot_OBJ.get_description();
title(hax, desc_str);

% create an ANIMATION
veh_OBJ = veh_OBJ.rotate_and_animate(arot_OBJ, hax);

