
Explore PASSIVE rotations which Transform a G vec into a B vec

In this tutorial, we're going to explore the concept of PASSIVE rotation matrices.

Why are we doing this ?

• Rotation matrices are used heavily in Mechanical, Robotic and Aeronautical engineering applications.
• Often students can get confused when they read the term "Rotation matrix". In many/most cases, this

confusion can be reduced by emphasizing a rotation matrix as being either PASSIVE or ACTIVE.

Bradley Horton : 01-Mar-2016, bradley.horton@mathworks.com.au

Introduction:

Consider the following scenario:

• We have a data point .
• We have a fixed frame called the G-fame.
• We know the (x,y) co-ordinates of the point in this G-fame and refer to this as .
• We then rotate the B-frame relative to the fixed G-frame.

We now want to know what the co-ordinate of the point is relative to this new B-frame, ie: what is
? This scenario is shown in the figure below:

A PASSIVE rotation matrix , converts the co-ordinates of a point expressed in a fixed G-frame, into

the co-ordinates of the same point expressed in the new B-frame.

A concrete example - part 1:

Consider the specific case of and a B-frame rotated by 60 degrees relative to Z axis of the

G-frame

gP = [3,1,0]';
alpha = 60*pi/180;

bRg = [cos(alpha), sin(alpha), 0;
 -sin(alpha), cos(alpha), 0;
 0, 0, 1];

So now apply the passive rotation matrix and calculate

bP = bRg * gP

bP =
 2.36602540378444
 -2.09807621135332
 0

A concrete example - part 2:

We can implement the formula for this passive rotation matrix into a MATLAB class called

<bh_rot_passive_G2B_CLS>. This will allow us to reuse the formula over and over again. So
repeating the previous example we have:

gP = [3, 1, 0]';

OBJ_PR = bh_rot_passive_G2B_CLS({'D1Z'}, alpha, 'RADIANS');

R = OBJ_PR.get_R1();
bP = R * gP

bP =
 2.36602540378444
 -2.09807621135332
 0

An example of 3 successive PASSIVE rotations

In the previous example we considered just 1 rotation. Consider now the scenario of performing a
sequence of rotations. As before, say we have a fixed G-frame. We start by having our B-frame co-
incident with G, and then we start to rotate the B-frame. Specifically, we're going to apply 3 LOCAL
axes rotations which will result in a newly orientated B-frame. Assume that we apply these 3 successive
rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis , aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis , aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis , aka ROLL

We can express a vector defined in the G axis to it's corresponding description in the B axis, using a
sequence of PASSIVE rotation matrices, ie:

 OR, in a more compact form as:

Let's explore:

Let's explore these 3 passive rotations using the MATLAB class <bh_rot_passive_G2B_CLS> that

we used earlier. Note in the code below how we are stating that the 1st rotation is about the local Z

axis (ie: D1Z), and the second rotation is then around the local Y axis (ie: D2Y), and the 3rd rotation

 is then around the local X axis (ie: D3X). In the example below we're alos going to use "symbolic"
variables for our rotation angles.

OBJ_B = bh_rot_passive_G2B_CLS({'D1Z', 'D2Y', 'D3X'}, [sym('phi'), sym('theta'), sym('psi')], 'SYM')

OBJ_B =
 bh_rot_passive_G2B_CLS with properties:

 ang_units: SYM
 num_rotations: 3
 dir_1st: D1Z
 dir_2nd: D2Y
 dir_3rd: D3X
 ang_1st: [1x1 sym]
 ang_2nd: [1x1 sym]
 ang_3rd: [1x1 sym]

The symbolic PASSIVE rotation matrices

R1 = OBJ_B.get_R1

R1 =

R2 = OBJ_B.get_R2

R2 =

R3 = OBJ_B.get_R3

R3 =

Here are some compound PASSIVE rotation matrices - part 1

R2R1 = OBJ_B.get_R2R1

R2R1 =

Note that "R2R1" is the same thing as "R2*R1":

diff_mat = R2R1 - R2*R1 % this should be zero

diff_mat =

Here are some compound PASSIVE rotation matrices - part 2

R3R2R1 = OBJ_B.get_R3R2R1

R3R2R1 =

Note that "R3R2R1" is the same thing as "R3*R2*R1":

diff_mat_B = R3R2R1 - R3*R2*R1 % this should be zero

diff_mat_B =

Here's the PASSIVE rotation matrix

bRg = R3*R2*R1

bRg =

Transform a vector in G, into its components in B

vG = [1,0,0]';
bRg = OBJ_B.get_R3R2R1;
vB = bRg*vG

vB =

Transform a vector in G, into its components in B - alternate syntax

vG = [1,0,0]';
vB_2nd_approach = OBJ_B.apply_R3R2R1(vG);

Note what the "apply_R3R2R1(vG)" method does the same thing as "R3R2R1 * vG"

diff_vB = vB - vB_2nd_approach % this should be zero

diff_vB =

Next steps:

If you found this tutorial interesting, there are 2 others that you may want to look at:

• bhLIVE_TUT_rot_passive_G2B_example_3_euler_rates_CONCEPT.mlx : In this tutorial we see an
application of PASSIVE rotation matrices that comes from the modelling of aerial vehicles.

• bhLIVE_TUT_rot_ACTIVE_B2G_example_1_CONCEPT.mlx : In this tutorial we introduce the
concept of the ACTIVE rotation matrix.

