SISO control design:

In this task we're going to design 3 SISO controllers for our 6-DOF vehicle model. The controllers are:

» Altitude (ie: Z) control
* YAW angle control
* PITCH angle control (NB: the ROLL controller will be identical)

The design requirements for this task are:

Label Variable to be controlled STEP response Gain
90% Rise time margin

(secs) (dB)
Altitude control | Y_ze (m) 2.5 60
Y_ze_dot (m/sec) 0.3 60
Yaw control Y _phi_yaw (rad) 1.5 60
Y_phi_dot_yaw_rate (rad/s) 0.25 60
Pitch control Y _theta_pitch (rad) 0.5 60
Y _theta_dot_pitch_rate (rad/s) 0.25 60

Bradl ey Horton : 01-Jun-2016, bradl ey. hort on@mt hwor ks. com au

Prerequisite:

Before commencing this task you need to run the bh_task find _trimand_|i nearise. m x script
to create required variables (eg: transfer function objects) that are used in this control design task.

assert(l==exist('sys 6dof lin'), 'you have NOT run the ***bh task find trim and linearise***')

Our SISO controller structure:

For each of these SISO controllers the structure that we'll use will involve 2 proportional controllers
configured in a cascade loop. The inner loop is the velocity loop and the outer loop is the position loop.
This control structure is shown below:

P_CONT_too P_CONT LTI System

g P(s) g = a TF_PITCHdot_from_UTQ_pitch I e N| T

Saturation

IS
@

POS_CMD

VEL

Note we can also represent this structure as:

PITCH_CONTROL_SYSTEM

POS_CMD

.—DANG CMD
- LTl System1

VEL
B ANG”MEAS TQ _/ TF_PITCHdot_from_UTQ_pitch

Saturation1
|-> ANG_dot MEAS

To design each controller we'll design the INNER velocity loop controller first, and then we'll design the
OUTER positional controller. The linear plants for each of these 3 control design tasks are:

-
el
o
@
pel
=]
w

OUTPUT Transfer INPUT

Function
Y_ze dot 1.079/s U_f
Y_phi_dot_yaw_rate 89.38/s U_TQ_phi_yaw_Z
Y_theta_dot_pitch_rate 1715/s U_TQ_theta_pitch_Y

Create the 3 linear plant transfer functions:

TF_ZEdot_from_Uf
TF_YAWdot from UTQ yaw
TF _PITCHdot from UTQ pitch

tf(sys 6dof lin('Y ze dot', 'U f'));
tf(sys 6dof lin('Y phi dot yaw rate', 'U TQ phi yaw Z'));
tf(sys 6dof lin('Y theta dot pitch rate', 'U TQ theta pitch Y'));

Echo these:

[TF_ZEdot from Uf, TF YAwWdot from UTQ yaw, TF PITCHdot from UTQ pitch]

ans =

From input "U_f" to output "Y theta dot pitch_rate":
1.079

From input "U TQ phi_yaw Z" to output "Y_theta dot pitch rate":
89.38

From input "U TQ theta pitch Y" to output "Y theta dot pitch rate":
171.5

Continuous-time transfer function.

Now do the design:

Open the Simulink model bh_do_CONTROL_DESI GN_vi a_PI D TUNER. sl x and consider the
subsystem called "INITIAL_PITCH_CONTROL_SYSTEM?". Launch the PID tuner app for each of the

green P blocks and design according to the requirements. NOTE: although all of our designs are just "P-
controllers”, the tuner app is called the "PID tuner" - hey, no big deal !

open_system('bh_do CONTROL DESIGN via PID TUNER.slx')

4\ PID Tuner (bh_do CONTROL DESIGN via PID TUNER/INITIAL PITCH CONTROL SYSTEM/P_CONT toc) - Step Plot: Reference tracking IE=E] & |

mﬂmm@mgaﬁmum M/ NZuM :fA NZCODY [P| NZPBL |R| NZRob m@ﬁ%&g@@@ﬂ
Plant Type: P Domain L , a " " , |
« T L - - . TR IU.SBIZ
Plant = Form: Parallel Time ~ Sawer Rezponze Time (ssconds) Faster v C@ E D
5 e ~| Reset Show Update
- = 0.
‘4 Inspect & options kg Ada Pot fgpressie Trarsentishzior fomust . T Design Paramsters Block ~
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS
5 - | Step Plot: Reference tracking |
s
&
o
= Step Plot: Reference tracking
1.2 T T T T T
Tuned response
= = Block response
i- e —— -7~

=" Controller Parameters
-
0.8 - - Tuned Block
-
. . P 3.049
o ’ ‘ 1 n/a nfa
= ’ D n/a
ERCE] ’ N .
= ’ n/a
<< ¢
’
L ’
0.4 7
’ Performance and Robustness
’
7 Tuned Block
02 ‘¢ Rise time [0.514 seconds 194 secands
? Settling time 10.804 seconds 3.54 seconds
’ Overshoot 10.697 % 0%
o | | | Peak 1oL 1
) 1 2 5 Gain margin lInf dB @ Inf rad/s Inf dB @ Inf rad/s
Time (seconds) Phase margin 716 deg @ 2.89 rad/s |83.5 deg @ 0.993 rad/s
Closed-loop stability |Stable Stable

And you can repeat this design for the YAW and ALTITUDE controllers. The final designs that | have
made are also shown in the bh_do_CONTROL_DESI GN_vi a_PI D_TUNER. sl x model, and they are:

FINAL_DES_ALTITUDE_CONTROL_SYSTEM FINAL_DES_YAW_CONTROL_SYSTEM FINAL_DES_PITCH_CONTROL_SYSTEM
Y ze_cmp 3 yaw_cmMD) N ANG_cMD
3 Ze_lfiEAS THRUST [» p YAw:MEAS TQ_YAW [N ANG_MEAS : Tap
Y Ze_dot_MEAS 3 YAW-_doI_MEAS Nan G:dcl_MEAS

But what about the NON-linear 6-DOF model ?

The controllers that we've just designed used a linear approximation of our 6-DOF model.

SO we now need to try the controllers with our NON-linear model. Open the model

bh_test LI NCONT_on_NONLI N _pl ant. sl x and see how the controllers performed - here we apply
STEPS and pulses of:

e Ze=1(m)
* Pitch = 30 (degrees)
* YAW =60 (degrees)

4 EYES_ONE I o (2|5 i

File Tools View Simulation Help k]

G- BOP® |- Q-0 F&-

