
SISO control design:

In this task we're going to design 3 SISO controllers for our 6-DOF vehicle model. The controllers are:

• Altitude (ie: Z) control
• YAW angle control
• PITCH angle control (NB: the ROLL controller will be identical)

The design requirements for this task are:

Bradley Horton : 01-Jun-2016, bradley.horton@mathworks.com.au

Prerequisite:

Before commencing this task you need to run the bh_task_find_trim_and_linearise.mlx script
to create required variables (eg: transfer function objects) that are used in this control design task.

assert(1==exist('sys_6dof_lin'), 'you have NOT run the ***bh_task_find_trim_and_linearise***');

Our SISO controller structure:

For each of these SISO controllers the structure that we'll use will involve 2 proportional controllers
configured in a cascade loop. The inner loop is the velocity loop and the outer loop is the position loop.
This control structure is shown below:

Note we can also represent this structure as:

To design each controller we'll design the INNER velocity loop controller first, and then we'll design the
OUTER positional controller. The linear plants for each of these 3 control design tasks are:

Create the 3 linear plant transfer functions:

TF_ZEdot_from_Uf = tf(sys_6dof_lin('Y_ze_dot', 'U_f'));
TF_YAWdot_from_UTQ_yaw = tf(sys_6dof_lin('Y_phi_dot_yaw_rate', 'U_TQ_phi_yaw_Z'));
TF_PITCHdot_from_UTQ_pitch = tf(sys_6dof_lin('Y_theta_dot_pitch_rate', 'U_TQ_theta_pitch_Y'));

Echo these:

[TF_ZEdot_from_Uf, TF_YAWdot_from_UTQ_yaw, TF_PITCHdot_from_UTQ_pitch]

ans =

 From input "U_f" to output "Y_theta_dot_pitch_rate":
 1.079

 s

 From input "U_TQ_phi_yaw_Z" to output "Y_theta_dot_pitch_rate":
 89.38

 s

 From input "U_TQ_theta_pitch_Y" to output "Y_theta_dot_pitch_rate":
 171.5

 s

Continuous-time transfer function.

Now do the design:

Open the Simulink model bh_do_CONTROL_DESIGN_via_PID_TUNER.slx and consider the
subsystem called "INITIAL_PITCH_CONTROL_SYSTEM". Launch the PID tuner app for each of the

green P blocks and design according to the requirements. NOTE: although all of our designs are just "P-
controllers", the tuner app is called the "PID tuner" - hey, no big deal !

open_system('bh_do_CONTROL_DESIGN_via_PID_TUNER.slx')

And you can repeat this design for the YAW and ALTITUDE controllers. The final designs that I have
made are also shown in the bh_do_CONTROL_DESIGN_via_PID_TUNER.slx model, and they are:

But what about the NON-linear 6-DOF model ?

The controllers that we've just designed used a linear approximation of our 6-DOF model.
SO we now need to try the controllers with our NON-linear model. Open the model
bh_test_LINCONT_on_NONLIN_plant.slx and see how the controllers performed - here we apply
STEPS and pulses of:

• Ze = 1 (m)
• Pitch = 30 (degrees)
• YAW = 60 (degrees)

•

