Explore ACTIVE rotations applied to a BODY-FIXED frame

In this tutorial, we're going to explore the concept of ACTIVE rotation matrices.

xp] _ [cos(8) —sin(H) Xp
}’P]G_[sin(éi) cos(8)] * J’P]B

Why are we doing this ?

* Rotation matrices are used heavily in Mechanical, Robotic and Aeronautical engineering applications.
« Often students can get confused when they read the term "Rotation matrix". In many/most cases, this
confusion can be reduced by emphasizing a rotation matrix as being either PASSIVE or ACTIVE.

Bradl ey Horton : 01-Mar-2016, bradl ey. hort on@rat hwor ks. com au

Introduction:

Consider the scenario where we have an original data point P . and we want to rotate this data point

RIG
to a new location called P, . . This scenario is shown below. We can think of this task in the following

way:

* Imagine that we start with P, and that this point is fixed ("glued”) to a co-ordinate frame called the B-

RIG
frame.

* We know the (x,y) co-ordinates of the point in this B-fame and refer to this as®P
* We then rotate the B-frame relative to a fixed frame called the G-frame. Note that because point P is

"glued" to the B-frame, the co-ordinates P do not change while the B-frame is rotating.

We now want to now what the final co-ordinate of the point P is relative to the fixed G-frame, ie: what is
¢p 2 This is also shown below:

T y ¥YB Ve
Pngw 4 IIID
"
----------------------------- B Poric 3
v E
> X 4 o, X
xp] _ [COS(B) —sin(@) . xp]
vel, — Isin(8) cos(@) Yplg

An ACTIVE rotation matrix GRB, allows us to calculate the position of the new point relative to the G-

frame, ie: “P. An example of a matrix equation that defines this ACTIVE rotation is defined below:

oo00000

0000000000000 0

xp] [cos(@) —sin(8)] [xp
}"PIG_[SiI‘j(H) cos(@)] * }’p]E

A concrete example - part 1:

1
Consider the specific case of Bp _ | | and a B-frame rotated by 45 degrees relative to Z axis of the
0
G-frame:
bP = [1,0,0]";
alpha = 45*pi/180;
gRb = [cos(alpha), -sin(alpha) 0;

sin(alpha), cos(alpha), 0;
0, 0, 11;

gP = gRb * bP

9P =
0.707106781186548
0.707106781186547

0

A concrete example - part 2:

We can implement the formula for this ACTIVE rotation matrix GRB into a MATLAB class called

<bh_rot _active_B2G_CLS>. This will allow us to reuse the formula over and over again. So
repeating the previous example we have:

bP = [1, 0, 01';

alpha = 45*pi/180;

0BJ AR = bh rot active B2G CLS({'D1Z'}, alpha, 'RADIANS');
gRb = 0BJ AR.get active R1();

gP = gRb * bP

9P =
0.707106781186548
0.707106781186547

0

Recall our discussion on PASSIVE rotations

There is a special relationship between PASSIVE and ACTIVE rotation matrices, so let's first review
what we know about PASSIVE rotation matrices. Say we have a fixed G-frame. We start by having our
B-frame co-incident with G, and then we start to rotate the B-frame. Specifically, we're going to apply 3
LOCAL axes rotations which will result in a newly orientated frame called the B-frame. Assume that we
apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis (¢), aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis (8), aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis (¥), aka ROLL

We can express a vector defined in the G-frame to it's corresponding description in the B-frame, using a
sequence of PASSIVE rotation matrices, ie:

fv = R3X () x R2Y(8,) x R1Z(d,) x Gy

OR, in a more compact form as: By = BRG x Sy Where BRG is the PASSIVE rotation matrix.

Now define what we mean by ACTIVE rotations

Continuing on from the previous section, we can now write:

Sv=R1Z(¢p,) ' * RZY(ey)‘l *R3X(p) " *Pv
‘v=R1Z(¢,)" * R2Y(6)" * R3X(p)" **v

Gy = R1Z(-¢,) * R2Y(—9y) *R3X(-y) *By

If we now define the following ACTIVE rotation matrices:

L a R1Z(¢) = R1Z(p)" =R1Z(~¢)
2. a R2Y(6,) = R2Y(6)™' =R2Y(-0)
3 a R3X(y) = R3X(p)"! =R3X(-p)

Then we can write:

‘v = a_R1Z(¢) * a_R2Y(6) * a_R3(y) * By

Or in a more compact form: “v = “R, x ®v Where “R_ is the ACTIVE rotation matrix.

It should be clear that :°R = ("R)™" = (°R))"

Let's explore these ACTIVE rotations

Let's create on of those active rotation objects that we used earlier. We'll create an object that
implmenets the sequence:

1. R1Z occurs 1st about the LOCAL Z body axis (¢), aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis (6), aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis (1), aka ROLL

OBJ A = bh rot active B2G CLS({'D1Z', 'D2Y', 'D3X'}, [sym('phi'), sym('theta'), sym('psi')],

0BJ A =
bh rot active B2G CLS with properties:

ang units: SYM
num rotations: 3

dir 1st: D1Z
dir 2nd: D2Y
dir 3rd: D3X
ang 1lst: [1x1 sym]
ang 2nd: [1x1 sym]
ang 3rd: [1x1 sym]

The symbolic ACTIVE rotation matrices

aR1 = 0BJ_A.get active R1

aRl =

cos(@) —-ﬂn(Q) 0
ﬂn(@) cos(@) 0
0 0 1

aR2 = 0BJ_A.get active R2

aR2 =

cos(@) 0 sn1(9)
0 1 0
- sh1(9) 0 cos(@)

aR3 = 0BJ_A.get active R3

aR3 =
1 0 0
0 cos (1,0) - sin(lp)
0 ﬂn(w) cos(w)

Here are some compound ACTIVE rotation matrices - part 1
aR1R2 = aR1*aR2

aR1R2 =

cos(¢) cos(8) -sin(¢p) cos(¢)sin(8)
cos(@) sin ((p) cos((p) sin((p) sin(@)
—-ﬂn(@) 0 cos(@)

Note that "aR1 * R2" is the same thing as "get_active_ R1R2()":

diff mat = aR1R2 - 0BJ A.get active R1R2 % this should be a ZERO matrix
diff mat =

HH

Here are some compound ACTIVE rotation matrices - part 2

o O O
o O O
o O O

aR1R2R3 = aR1*aR2*aR3

Ccos ((p) cos (9) cos((p) sin (l/)) sin(@) - cos (l/}) sin((p) sin(qo) sin(z/)) + COS ((p) cos(l/)) sin(@)
cos(8) sin(¢p) cos(¢) cos () + sin(¢) sin(yp) sin(6) cos (1) sin(¢) sin(8) - cos(¢) sin(y)
- sin(0) cos(8) sin () cos(y) cos(8)
Note that "aR1 * R2 * aR3" is the same thing as "get_active_R1R2R3()":

diff mat = aR1R2R3 - 0BJ A.get active R1R2R3 % this should be a ZERO matrix

diff mat =

Here is the ACTIVE rotation matrix GRB

o O O
v

o O O
o O O

Here is the compound ACTIVE rotation matrix:
gRb = aR1*aR2*aR3

gRb =

Ccos ((p) cos (9) cos((p) sin (l/)) sin(@) - cos (l/}) sin((p) sin(qo) sin(z/)) + COS ((p) cos(l/)) sin(@)
cos(8) sin(¢p) cos(¢) cos () + sin(¢) sin(yp) sin(6) cos (1) sin(¢) sin(8) - cos(¢) sin(y)
- sin(0) cos(8) sin () cos (1) cos(8)

Recall the PASSIVE rotation matrixBRG

Note how the inverse of the ACTIVE GRB is just the PASSIVE BRG which we computed during our
discussion on PASSIVE rotations

bRg = inv(gRb);
simplify(bRg)

cos(¢p) cos(0) cos(0) sin(¢p) - sin(0)
cos((p) sin(z,b) sin(@) - cos(t,b) sin ((p) cos ((p) cos (w) + sin((p) sin (w,b) sin(@) cos (0) sin (1,0)
sin(¢) sin(y) + cos(¢) cos(1) sin(8) cos (1) sin(¢) sin(0) - cos(¢p) sin(w) cos(w) cos(8)

Let's rotate an aeriel vehicle:

Now let's apply these ACTIVE rotation matrices to a "vehicle":

% this will be the "toy" system that we'll rotate in space
veh 0BJ = bh vehicle CLS()

veh OBJ =
bh vehicle CLS with properties:

FaceAlpha: 1

gRb: [3x3 double]

XL: [-2 2]

YL: [-2 2]

ZL: [-2 2]
b col: [18x1 double]
b col: [18x1 double]
b col: [18x1 double]
g
g
g

g _col: [18x1 double]

~col: [18x1 double]
~col: [18x1 double]

‘N-<><N-<><

Show the vehicle in it's original pose

figure();

hax(1l) = subplot(2,2,1); veh O0BJ.plot 3D(hax(1l));
hax(2) = subplot(2,2,2); veh 0BJ.plot XY(hax(2));
hax(3) = subplot(2,2,3); veh 0BJ.plot XZ(hax(3));
hax(4) = subplot(2,2,4); veh O0BJ.plot YZ(hax(4));

>~ 0 1‘i5---.-axb

-2

-2 0 2

X
2 Zb 2 b
1 1
N 0 N 0 Y,

-1 -1
2 -2

2 0 -2 -2 0 2

Define the ACTIVE rotation sequence and angles

We'd like to subject the vehicle to a series of rotations applied to a body fixed co-ordinate frame
attached to the vehicle. Assume that we apply these 3 successive rotations in the following order:

1. R1Z occurs 1st about the LOCAL Z body axis (¢), aka YAW
2. R2Y occurs 2nd about the LOCAL Y body axis (0), aka PITCH
3. R3X occurs 3rd about the LOCAL X body axis (¥), aka ROLL

degs yaw = 90;
degs pitch= 30;
degs roll = 60;

arot OBJ = bh rot active B2G CLS({'D1Z','D2Y','D3X'}, ...
[degs yaw, degs pitch, degs roll],
'DEGREES ')

arot 0B] =
bh rot active B2G CLS with properties:

ang _units: DEGREES

num_rotations: 3

dir 1st: D1Z

dir 2nd: D2Y

dir 3rd: D3X

ang 1lst: 90

ang _2nd: 30

ang 3rd: 60

Now apply this ACTIVE rotation sequence to the vehicle

% get each of the active rotation matrices
aRl = arot OBJ.get active R1();
aR2 = arot 0BJ.get active R2();
aR3 = arot 0BJ.get active R3();

% chain them together in the correct ACTIVE order
aR1R2R3 = aRl * aR2 * aR3;

% get the B frame geometry data of the vehicle
[X,Y,Z] = veh OBJ.get B XYZ();

vmat = [X(:), Y(:), Z(:) 1'; % a 3xN matrix

% now apply the complete ACTIVE rotation matrix to our vehicle data
new XYZ = aR1R2R3 * v mat;

% store this new rotated vehicle data
veh OBJ = veh O0BJ.set G XYZ(new XYZ(1,:)', new XYZ(2,:)', new XYZ(3,:)');

% store the DCM so that we can draw the body fixed frame arrows
veh OBJ.gRb = arot O0BJ.get active R;

% plot the new rotated vehicle
figure();
hax(1l) = subplot(2,2,1); veh O0BJ.plot 3D(hax(1l));

hax(2) = subplot(2,2,2); veh 0BJ.plot XY(hax(2));
hax(3) = subplot(2,2,3); veh 0BJ.plot XZ(hax(3));
hax(4) = subplot(2,2,4); veh 0BJ.plot YZ(hax(4));
title(hax(1l), 'THE FINAL pose after active rotations')
THE FINAL pose after active rotations
b
2 Yb 1
0 %
N Z
b >~ 0
xb
) 1
2)
0 , 0 2
X -2 Y -2 0 2
X
2 2
Yb Yb
1 1
b
N NOO
-1 b -1)(b
-2 -2
2 0 -2 -2 0 2
X Y

REPEAT what we just did ...

veh O0BJ]
figure();
clear hax

BUT let's show the progressive rotations

bh vehicle CLS();

% Here's the vehicle in its ORIGINAL pose

hax (1)
title(hax(1),

subplot(2,2,1);

veh 0BJ.plot 3D(hax(1));

'Initial VEHICLE pose')

% apply the 1st active rotation

clear veh 0BJ

veh 0BJ = bh vehicle CLS();

V_3xN = veh 0BJ.get B XYZ 3xN();
new XYZ =

veh 0B] =

gRb = arot OBJ.get active R1();
veh 0BJ.gRb = gRb;

)
)

hax(2) = subplot(2,2,2);
str =
title(hax(2),str)

arot OBJ.apply active RI(V_3xN);
veh 0BJ.set G XYZ(new XYZ(1,

et current vehicle data
apply the rotation
new XYZ(2,:)', new XYZ(3,:)'
% get and store the DCM

ORIG pose is starting point
g

%
%
%

3%

update the vehicle's PLOT

veh 0BJ.plot 3D(hax(2));

sprintf('VEHICLE after yaw R1Z(\\phi = %d”0)',degs yaw);

);

% apply the 2nd active multiplication
clear veh 0BJ]

veh 0BJ = bh vehicle CLS(); % ORIG pose is starting point
V. 3xN = veh OBJ.get B XYZ 3xN(); % get current vehicle data
new XYZ = arot OBJ.apply active R1R2(V 3xN); % apply the rotation

veh OBJ = veh 0BJ.set G XYZ(new XYZ(1,:)', new XYZ(2,:)', new XYZ(3,:)');
gRb = arot OBJ.get active R1R2();

veh 0BJ.gRb = gRb;

% update the vehicle's PLOT

hax(3) = subplot(2,2,3); veh 0BJ.plot 3D(hax(3));

str = sprintf('VEHICLE after pitch R2Y(\\theta = %d”0)',degs pitch);
title(hax(3),str)

% apply the 3rd active multiplication
clear veh 0BJ]

veh 0BJ = bh vehicle CLS(); % ORIG pose is starting point
V. 3xN = veh OBJ.get B XYZ 3xN(); % get current vehicle data
new XYZ = arot OBJ.apply active R1R2R3(V 3xN); % apply the rotation

veh OBJ = veh 0BJ.set G XYZ(new XYZ(1,:)', new XYZ(2,:)', new XYZ(3,:)');
gRb = arot OBJ.get active R1R2R3();

veh 0BJ.gRb = gRb;

% update the vehicle's PLOT

hax(4) = subplot(2,2,4); veh OBJ.plot 3D(hax(4));

str = sprintf('VEHICLE after roll R3X(\\psi = %d”o0)',degs roll);
title(hax(4),str)

Initial VEHICLE pose VEHICLE after yaw R1Z(¢ = 90°)

2 z, 2 A
N O :%(b
b
2
_2 2
0 0
2 .2

Next steps:

Animating what we've just done. If you evaluate the following code in the MATLAB command window,
you'll see an animation of our vehicle:

% Create an ACTIVE rotation object

degs yaw = 90;
degs pitch= 30;
degs roll = 60;
arot 0BJ = bh rot active B2G CLS({'D1z', 'D2Y','D3X'},

[degs yaw, degs pitch, degs roll],
'DEGREES ') ;

% create a figure

figure();

hax = axes;

desc _str = arot OBJ.get description();

title(hax, desc str);

D1Z=90.00, D2Y=30.00, D3X=60.00, [DEGREES]

% create an ANIMATION
veh 0BJ = veh OBJ.rotate and animate(arot OBJ, hax);

D1Z=90.00, D2Y=30.00, D3X=60.00, [DEGREES]

