
Task: The time derivative of the DCM

In this task, we're going to explore how to compute the time derivative of a Direction Cosine Matrix
(DCM). By knowing how to do this, we then have an approach for propagating the angular pose of a
rigid body that does NOT suffer from the singularities that afflict the propagation of Euler angles. The
fundamental relationship that we'll derive is this one:

At the end of this task we'll demonstrate the application of this expression using a mathematical model
of a quadcopter.

Motivation:

A common approach for integrating the equations of motion (Newton's) of a quadcopter, is to convert
the vehicles angular velocity vector  into it's corresponding Euler rates. These Euler rates then

get integtrated to produce the angular orientation of the vehicle. A problem arises however in that the
conversion of  to Euler rates contains a singularity at specific poses (eg: a ZYX Euler sequence

has such a singularity at a pitch angle of 90 degrees). An alternate approach then to propagating the
vehicle's angular pose, is to integrate the DCM matrix directly. This approach does NOT sufer from the
singularity problem associatd with integrating Euler rates.
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The Background:

Say we have an inertial frame referred to as the G-frame. And we also have a body fixed frame referred
to as the B-frame. The B-frame is rotating relative to the G-frame. The origins of the G-frame and B-
frame are always co-incident.



We can convert vectors expressed in each frame, into their corresponding components in the other
frame, using Direction Cosine Matrices, eg:

•

•

In this tutorial we're going to derive the expression for:

•

Some Nomenclature:

Define some nomenclature for the body B-frame:

•  : the position of point p, expressed in components of the B-frame.
•  : the velocity of point p, relative to the G-frame and expressed in components of the B-frame.

•  : short hand notation for

•  : the angular velocity of the B-frame relative to the G-frame and expressed in components of the

B-frame.
•  : short hand notation for

Define some nomenclature for the inertial G-frame:

•  : the position of point p, expressed in components of the G-frame.
•  : the velocity of point p, relative to the G-frame and expressed in components of the G-frame.

•  : short hand notation for

•  : the angular velocity of the B-frame relative to the G-frame and expressed in components of the

G-frame.
•  : short hand notation for

Define some nomenclature for converting vectors between the B and G-frames and vice versa:

•

•



•

The point p:

Consider a rigid body such as the humble potatoe. We attach a body fixed frame to this body and call
it the B-frame. The B-frame rotates with the body - it is fixed to the body. Consider also a fixed point on
the potatoe, and let's call that point, p. Relative to the B-frame, the point p does NOT move, eg: imagine

that point p is a "thumb tac"  that has been pushed into the potate.

Let's find :

Let's say that at time , the B and G frames are co-incident. Now since point p is "fixed" in the B-
frame (ie: point p canNOT move relative to the B-frame), then we can write that:

The above result will prove useful in a moment when we decide to take the derivative of . Now

let's use the above result to write an expression for  :

Note how all of the p-terms in the above expression are expressed in components of the G-frame. So

let's take the time derivative of , where the derivative is taken with respect to the G-frame.

which we can now write as:



Let's define:

Note that the above equation, can be restated as: , which is a BIG

result !!

Let's continue exploring our  expression:

Note that  is actually a SKEW symmetric matrix, ie:  - this is proven in

Appendix A. And we can use this fact to rewrite the matrix equation into a vector CROSS product. To
do this, we'll make the following definition:

And with this definition of  we can now write:

Let's confirm this last step with MATLAB:

syms omega_x omega_y omega_z
syms a b c
 
S = [          0,   -1*omega_z,       omega_y;
         omega_z,            0,    -1*omega_x;
      -1*omega_y,      omega_x,             0 ]

S =

  
p     = [a,b,c].';
 
omega = [omega_x omega_y omega_z].';



So here's the result of doing

mat_mult_result  = S * p

mat_mult_result =

And here's the result of doing

vec_cross_result = cross(omega, p)

vec_cross_result =

The BIG result:

One of the BIG results that we derived in the previous section was this one:

Or, after some simple rearrangement:

This equation tells us how to compute the derivative of the Direction Cosine Matrix  if we know the

angular velocity of the B-frame relative to the G-frame and expressed in components of the G-frame, ie:
.

The implementation of the BIG result: - part 1

The significance of this expression for , is that we can use it as a mechanism to propagate the

orientation of a rigid body. Using this approach there are NO singularities that would prevent us from

computing . The implementation of this algorithm would look something like this:



Note that to compute , we could let the user specify an initial Euler angle configuration. Also,

the calc_S function would be:

When we integrate , we would expect that the orthogonality relationship of  would

still be true. And it almost is ! The combination of "numerically" intergrating a derivative and the finite
word size of computer calculations, means that we end up with a relationship that is more like this:

We can reduce this  term using a correction technique such as the one proposed by William
Premerlani and Paul Bizard (see: HERE).

https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjRv57ztLXOAhUJlZQKHS_qA2MQFggdMAA&url=https%3A%2F%2Fgentlenav.googlecode.com%2Ffiles%2FDCMDraft2.pdf&usg=AFQjCNFd94N3cdq67qbwEvZZ-S2Rn5hhzw


The implementation of the BIG result: - part 2

If you'd like to see how we actually use the relationship:

then have a look at the Simulink model called <bh_6dof_DCM_integrate.slx>.  In this model we

integrate  to determine the angular orientation of the quadcopter.

clear; clc; bh_quad_params
open_system('bh_6dof_DCM_integrate')



Appendix A: The skew symmetry of

Earlier in this tutorial we defined the following:

and we made the statement that  was a SKEW symmetric matrix, ie: . So

let's prove that now. What we want to show is that:

We start with the identity:

and then take the derivative w.r.t  on both sides:

which then gives us:



And we note that the LHS could be written as:  using the standard matrix algebra

relationship that . So we can finally write:

Which is our proof that  is SKEW symmetric.


