
Principal Moments of Inertia

In this task we're going to look at how we can calculate the principal axes and principal moments of

inertia, of a rigid body. Recall our well known angular momentum equation , where the B-
frame about which we are determining the angular momentum is both BODY fixed AND at the body's
centre of mass:

 where  etc.

What we would like to do is to determine another co-ordinate frame, call it the P-frame, which is also at
the body's centre of mass, but the inertia matrix about this new P-frame is diagonal. We call this P-frame
the PRINCIPAL frame and the corresponding diagonal inertia matrix the PRINCIPAL moment of inertia

matrix , ie:

What we're going to do:

Key topics that we'll cover in this task are:

• review Eigenvalues for a general matrix
• review Eigenvalues for a SYMMETRIC matrix
• review passive rotations and the DCM

After reviewing these topics we'll present the solution to determining the PRINCIPAL moments of
inertia.
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ATTENTION: before we start I want the following acknowledged:

In the MATLAB doc for the eig() function it states that when you specifically use this calling syntax:

>> [V,D] = eig(A),

That the returned eigenvectors V are normalised such that the 2-norm is 1. For other calling syntaxes,
this normalization scheme is NOT necessarily used.

So?

So in this task, we'll be using the above calling syntax which gives us nomalised eigenvectors of
magnitude 1 !!

Eigenvalue problems

Recall the eigenvalue problem for a square matrix :

syms I_xx I_xy I_xz I_yy I_yz I_zz lambda
% define the original inertia matrix
A  = [I_xx, I_xy, I_xz;
      I_xy, I_yy, I_yz;
      I_xz, I_yz, I_zz ]  

A =

Create the eigenvalue problem:

% create the eigenvalue problem
e_mat = A - lambda*eye(3)

e_mat =

det_e = det(e_mat);
det_e = collect(det_e)



det_e

=

After determining ALL of the eignvalue ( ) and eigenvector ( ) pairs , we can collect them into

matrices and write them as a single matrix equation:

where

So you can see that we can covert A into a diaginal matrix using the matrix of A's eigenvectors:

 

Let's have a look at an example using MATLAB's eig() function:

% a test matrix
A = [ 1, 2, 3;
      4, 0, 6;
      7, 8, 9];
% compute the eignvectors and eigenvalues  
[V, lambda] = eig(A)  

V = 3x3 double

    0.2496    0.8346    0.0334
    0.4198   -0.0387   -0.8553
    0.8726   -0.5495    0.5170

lambda = 3x3 double

   14.8509         0         0
         0   -1.0680         0
         0         0   -3.7829

 
% look at how we can diagonalise A:
A_diagonal = inv(V) * A * V

A_diagonal = 3x3 double

   14.8509    0.0000   -0.0000
    0.0000   -1.0680   -0.0000
   -0.0000    0.0000   -3.7829



Eigenvalue problems: When A is Symmetric

When A is symmetric, ie: , the eigenvectors corresponding to the distinct eigenvalues have a
cool property - the eigenvectors are actually ORTHOGONAL, ie:

, for  and

, for

If we normalise each of these eigenvectors so that their vector norm is 1 (ie: ), then we say

that the eigenvectors are ORTHONORMAL, ie:

Therefore our diagonalization formula introduced earlier, can now be written as:

Let's look at an example:

% here is a symmetric matrix A
A = [  1,   -9,  -17;
      -9,    2,   45;
     -17,   45,    3; ];
 
% compute the eignvectors and eigenvalues   
[V, lambda] = eig(A) 

V = 3x3 double

    0.1357    0.9341   -0.3302
   -0.6848    0.3293    0.6501
    0.7160    0.1379    0.6844

lambda = 3x3 double

  -43.2641         0         0
         0   -4.6830         0
         0         0   53.9471

 
% look at how we can diagonalise A:
A_should_be_diagonal = V' * A * V

A_should_be_diagonal = 3x3 double

  -43.2641   -0.0000   -0.0000
   -0.0000   -4.6830    0.0000
   -0.0000    0.0000   53.9471



 
% demonstrate that V is made up of orthonormal vectors
B_should_be_identity = V * V.'

B_should_be_identity = 3x3 double

    1.0000    0.0000   -0.0000
    0.0000    1.0000    0.0000
   -0.0000    0.0000    1.0000

OK, so we have 3 mutually orthogonal vectors ... which is awesome, but do these 3 vectors form a Right
hand rule trio of vectors? We can ensure that they do by making the 3rd vector the cross product of the

first two, eg:

V = bh_we_have_a_RH_frame(V);

 ... yep V gives us a RH rule frame !

V * V.'

ans = 3x3 double

    1.0000    0.0000   -0.0000
    0.0000    1.0000    0.0000
   -0.0000    0.0000    1.0000

Principal moments of Inertia:

OK, now for the main event. Let's look at how we now calculate the principal axes of a rigid body.

Recall our well known angular momentum equation  where the frame about which we are
determining the angular momentum is both BODY fixed AND at the body's centre of mass:

 where  etc.

Note: that the B-frame inertia matrix  is symmetric - are you thinking what I'm thinking ?

 

What we would like to do is to determine another co-ordinate frame, call it the P-frame, which is also at
the body's centre of mass, but the inertia matrix about this new P-frame is diagonal. We call this P-frame
the PRINCIPAL frame and the corresponding diagonal inertia matrix the PRINCIPAL moment of inertia

matrix , ie:

To determine this new PRINCIPAL frame we need to find a co-ordinate transformation  that converts

co-ordinates in the original body "B-frame" into their corresponding co-ordinates in the new PRINCIPAL



"P-frame". If this looks/sounds familiar, it should .... because what we've described is just a PASSIVE

rotation, ie: we have a FIXED B-frame, and we will rotate a P-frame relative to B. And  is just

the PASSIVE rotation matrix which relates components in one frame to another. We'll define this

relationship as . Consider then the following:

Now let's focus on the angular momentum described in the B-frame

 

The equation for  has the form ( ) which is similar in shape to what we saw when we

discussed eigenvectors of symmetric matrices. As observed earlier, we know that  is symmetric , and

as such we can use the eigenvectors of  to construct a diagnonal matrix from  ... and that's exactly
what we want to do.

So the 2 equations that pull everything together are:

So ? - So we've finally converged on some useful results:

• The PRINCIPAL moments of inertia are the eigenvalues  of .
• The orientation of the PRINCIPAL P-frame relative to the initial B-frame, is given by the passive

rotation matrix  , where: .

RECALL the one small detail:  One small detail that we need to mention is that in order to interpret

 as a rotation matrix, we need to ensure that the 3 basis vectors in  form a right handed co-
ordinate frame, ie: just because 3 unit vectors are mutually orthogonal doesn't mean they form a RH

frame. So an easy way to do this is to redefine  as:



Let's look at an example:

In the previous section we established that the PRINCIPAL moments of inertia could be found by

solving an eigenvalue problem. The Principal moments of Inertia  are the eigenvalues of the original

inertia matrix . SO let's solve this eigenvalue problem. In this example we're going to :

• use MATLAB's eig() to then solve for the eigenvectors and eigenvalues

format longG
 
bIn = [  
        117.81      -59.685       56.046
       -59.685       171.95       14.243
        56.046       14.243       186.33
      ];      

Find the :

Now calculate the Principal inertia values using the eig() function

% OK: let's use the EIG() function to solve for both eigenvalues AND eigenvectors
[V, Ip_mat] = eig(bIn)

V = 
        -0.797353030582144        -0.111887356741905        -0.593050894968366
        -0.458290582862403         0.751631273019369          0.47436291073283
         0.392680386932056         0.650024344790711         -0.65059239535849

Ip_mat = 
          55.9036216319413                         0                         0
                         0          193.152275905814                         0
                         0                         0          227.034102462245

Check that we have a RH co-ordinate frame. We know that

V = bh_we_have_a_RH_frame(V);

 ... yep V gives us a RH rule frame !

Demonstrate V is orthonormal:

% demonstrate that V is made up of orthonormal vectors
figure;  
imagesc(V * V.'); 
colorbar



Summarise what we have so far

So we finally have our PRINCIPAL moments of inertia  AND we know how the PRINCIPAL axes are

orientated relative to the B-frame  .. AND we've checked for a RH frame:

% so let's summarise what we've got
Ip_mat

Ip_mat = 
          55.9036216319413                         0                         0
                         0          193.152275905814                         0
                         0                         0          227.034102462245

V

V = 
        -0.797353030582144        -0.111887356741905        -0.593050894968366
        -0.458290582862403         0.751631273019369          0.47436291073283
         0.392680386932056         0.650024344790711         -0.65059239535849

Next step: Let's define our passive Rotation matrix



Recall some of the formulaes mentioned earlier:

•

•

pRb = V.'

pRb = 
        -0.797353030582144        -0.458290582862403         0.392680386932056
        -0.111887356741905         0.751631273019369         0.650024344790711
        -0.593050894968366          0.47436291073283         -0.65059239535849

Let's have a closer look at the passive Rotation matrix

First I'd like to plot the unit vectors of our original B-frame:

figure
   % Plot the B-frame UNIT vectors 
   bx_u = [1;0;0];
   by_u = [0;1;0];
   bz_u = [0;0;1];
            
   bh_plot_triad( gca, bx_u, by_u, bz_u );  view(3);
      title('The B-frame UNIT vectors')



What I'd now like to do is to plot the P-frame unit vectors, but I want to draw them in the B-frame. To
compute the components of the P-frame expressed in terms of the B-frame we can just use our passive

rotation matrices. Recall what our passive rotation matrix does:

So to transform our P-frame unit vectors into their corresponding components in the B-frame we use the
following PASSIVE rotation matrix:

figure
   % express the unit vectors of P into their components in the B-frame 
   b_xi_p = pRb.' * [1;0;0];
   b_yi_p = pRb.' * [0;1;0];
   b_zi_p = pRb.' * [0;0;1];
    
   bh_plot_triad( gca, b_xi_p, b_yi_p , b_zi_p );   view(3);
      title('The P-frame UNIT vectors')

How about some more clarity ?

The Inertia matrix  that we've just been looking at, was actually produced from a "cloud" that we've
filled with tetrahedrons. We manully computed the system Inertia matrix from this "discretised" volume.



Here's what the cloud looks like ... with the original BODY axes and PRINCIPAL axes superimposed. It
looks alot better when you interactively rotate the plots in MATLAB.

SRC_DATA = load('bh_saved_ellip_cloud.mat');
 
figure;
hax(1) = subplot(1,2,1);
        scatter3(SRC_DATA.new_x_col, SRC_DATA.new_y_col, SRC_DATA.new_z_col); 
            % Plot the B-frame DOUBLE unit vectors 
            bx_u = [2;0;0];
            by_u = [0;2;0];
            bz_u = [0;0;2];
            hold('on');      
        bh_plot_triad( gca, bx_u, by_u, bz_u );   view(3); %view(-134,-34)
        title('The B-frame UNIT vectors')
hax(2) = subplot(1,2,2);
        scatter3(SRC_DATA.new_x_col, SRC_DATA.new_y_col, SRC_DATA.new_z_col);  
            % express the DOUBLE unit vectors of P into their components in the B-frame 
            b_xi_p = pRb.' * [2;0;0];
            b_yi_p = pRb.' * [0;2;0];
            b_zi_p = pRb.' * [0;0;2];
            hold('on');
        bh_plot_triad( gca, b_xi_p, b_yi_p, b_zi_p );   view(3); %view(-134,-34)
            title('The P-frame UNIT vectors')

% to see the axes rotate together you'll need to 
% "evaluate selection in command window"            
hlink = linkprop([hax(1),hax(2)],{'CameraPosition','CameraUpVector'});



Who new a story about potatoes could be so much fun ?


