

Predictive Maintenance of a Heat Exchanger

Inho Kim Ph.D. Senior Application Engineer MathWorks

© 2021 The MathWorks, Inc.

Motivation

- TEMA heat exchangers
 - Over 30 heat exchangers in refinery
 - 200 to 350 heat exchangers in petrochemical plants
- Shell and tube type heat exchangers
- Focus on heat exchanger fouling
- Degrade overall efficiency, increase downtimes
- Implicit equations based on field data

Heat Exchanger Model with E-NTU Method

 Variables depending on operating conditions and cases – short time process

Heat Transfer From Fluid 1 to Fluid 2

 Variables depending on deposition of fouling layers – long time process

[1] Holman, J. P. *Heat Transfer*. 9th ed. New York, NY: McGraw Hill, 2002.

Simscape Model

- Thermal liquid network model
- E-NTU heat exchanger block
- Short time process variables
 - Signal Editor with field data
- Long time process variables
 - Unknown, to be estimated

				f(x) = 0					
Scenariq _{M_dot_H}			A	В	S		S		A I
			т, <u>,</u> ,	A	A2	B2			
Scenario _{M_dot_L}			A A	B	A1	B1			19
			T,\ <u>+</u>		s		S		A '
	No. 10 and Secondary 1 and Sectors (0. 7).								
	E-NTU Heat Exchanger (TL-TL)			^					
	This block models a heat exchanger that shared between the two thermal liquid n	transfers heat between two distinct thermal liquid networks. Liqu etworks, Each thermal liquid network must have its own set of liq	uid prope	🛅 Block Parameters: Heat Exchanger (T	ι-π.)			×	
	Right-click on the block and select Simsc	ape > Block choices to select between Simple or E-NTU models.		E-NTU Heat Exchanger (TL-TL) This block models a beat exchange	r that transfers heat between two d	listinct thermal liquid	I networks. Liquir	i properties are not	
	The Simple model uses Specific Dissipati	on (SD) method to calculate the heat transfer rate. It is defined a	is the hea	shared between the two thermal lic	uid networks. Each thermal liquid n	network must have it	s own set of liqu	id properties.	
	heat transfer rate divided by the different on the Effectiveness-NTU method. The n	ce in inlet temperatures. In E-NTU model, the heat transfer rate i nodel supports the parallel or concentric flow, shell and tube, cros	is calculat ss flow, a	Right-click on the block and select s	Simscape > Block choices to select	between Simple or E	-NTU models.		
	heat exchanger configurations. Ports A1 and B1 are the thermal liquid co 1. Ports A2 and B2 are the thermal liquid	onserving ports associated with the heat exchanger inlet and outli I conserving ports associated with the heat exchanger inlet and or	et for The utlet for T	The Simple model uses Specific Dis heat transfer rate divided by the dif on the Effectiveness-NTU method. heat exchanger configurations.	sipation (SD) method to calculate the fference in inlet temperatures. In E- The model supports the parallel or o	he heat transfer rate. -NTU model, the hear concentric flow, shell	. It is defined as it transfer rate is I and tube, cross	the heat exchanger calculated based flow, and generic	
	Settings			Ports A1 and B1 are the thermal liq 1. Ports A2 and B2 are the thermal	uid conserving ports associated with liquid conserving ports associated v	h the heat exchanges with the heat exchan	r inlet and outlet iger inlet and out	for Thermal Liquid let for Thermal	
	Common Thermal Liquid 1 Ther	mal Liquid 2 Effects and Initial Conditions		Liquid 2.					
	Flow arrangement:	Shell and tube		Common Thermal Liquid 1	Thermal Liquid 2 Effects and In	nitial Conditions			
	Number of shell passes:	1		Minimum free-flow area:	minFFArea		m^2	~	
	Wall thermal dynamics:	Off		Hydraulic diameter for pressure loss:	hDiaTube		m	~	
	waii ulermai resistance:	wait menses	**	Thermal Liquid 1 volume:	0.01		m^3	~	
				Laminar flow upper Reynolds number limit:	2000				
				Turbulent flow lower Reynolds number limit:	4000				
				Pressure loss parameterization:	Constant loss coefficient			-	
				Pressure loss coefficient:	0.1				
				Heat transfer parameterization: Length of flow path for heat	Correlation for tubes			•	
				transfer:	lenTube		m	<u> </u>	
				Fouling factor:	:	FF		~	
				coefficient:	minFWHTCoeff		W/(m^2 * K)	~	

Estimating Fouling Factor With Simulink Design Optimization

- Parameterizing fouling factors
- Separate field data for controlled operating conditions – temperature and mass flow rate
- Iterate fouling factor estimation over time to correlate with efficiency of heat transfer
- Multiple scenarios of operating conditions for fouling factor correction

Fluid (Water)	Fouling Resistances(m^2K / KW)					
Demineralized or distilled	0.009					
Hard	0.043					
Soft	0.017					
Treated cooling tower water	0.034					
Coastal sea water	0.043					
Ocean sea water	0.026					
River water	0.043					
Engine jacket	0.052					
Lubricating oil	0.017 -0.043					
Vegetable oil	0.017 -0.052					
Organic solvents	0.009 -0.026					
Steam	0.009					
General process fluids	0.009 -0.052					

Heat Transfer Degradation Simulations and RUL Estimation

- Similarity-based RUL model
- Generation of degradation map
 - Simulating model with degradation time
 - Simulating model with operating conditions
- Parameter estimation of fouling factors
 - Inlet temperature, mass flow rate couples
 - Measurements of heat exchanger outlet temperature
 - Mapping back to degradation map to determine current degradation status

Summary

- Heat exchanger efficiency degradation with fouling
- Identified variables of interests with heat transfer equations
- Modeled heat exchanger with thermal liquid network using Simscape
- Searched ranges of fouling factor related to degradation and operating conditions
- Generated degradation map using simulations under multiple scenarios
- Identified current degradation level by back-calculating fouling factors