
1© 2021 The MathWorks, Inc.

Seismic Facies Classification with Wavelets and Deep Learning 

Akhilesh Mishra 

Senior Application Engineer 

MathWorks, Inc



2

Seismic data remote sensing 
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Seismic data remote sensing 

• Subsurface reflection proportional to impedance 

contrast of the layers 

• Quantitative interpretation allows determination of 

reservoir characteristics and reservoir types 
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Seismic signal processing – quite cumbersome

Image source : Shell International B.V.
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Seismic interpretation 
Helps identify subsurface 

features 

Examples of features : 
• A mix of sand, silt, and mud 

deposited in a fan-shaped delta 

at the mouth of a river (deltaic 

environment and facies)

• Coarse sandy sediments 

deposited in a meandering river 

channel (fluvial environment and 

facies)

• Extremely fine-grained sediments 

deposited in a shallow lakebed 

(lacustrine environment and 

facies).

Challenges : Time consuming, 

Reproducibility, and 

Interpretative  
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Seismic interpretation – Challenges  

Image source : Shell International B.V.
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Artificial Intelligence for seismic interpretation 
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Most methods include 

▪ Semantic segmentation 

using CNNs 

▪ Use 2D and 3D methods 

– UNet, VGGNet
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Challenges with Semantic Segmentation 

▪ Accuracy is overall less

▪ Input image size greatly impacts 

the prediction results  

▪ Models not data agnostic 

▪ Learned features are all image 

based, but underlying data is 

signals 
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Novel approach developed in SEAM AI competition  

▪ Introduction
SEAM Artificial Intelligence Project presents this 

data challenge competition in collaboration with 

AICrowd and Xrathus. This challenge features 

the Parihaka data set.

▪ Goals
The goal of the SEAM AI Parihaka challenge is 

to create a machine-learning algorithm which, 

working from the raw 3D image, can reproduce 

an expert pixel-by-pixel facies identification.
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Our solution : 

RNN approach with Wavelet pre-processing
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What happens if we train a network with raw data ? 
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Exploring the data : 
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Introduction to Wavelet Multiresolution Analysis 
Using DWT (Discrete Wavelet Transform) analyze signals into progressively finer octave bands 

90-180Hz

0-90 Hz

45-90 Hz

0-45 Hz

0-22 Hz

22-45Hz

Fs: 360 Hz

11-22 Hz

0-11 Hz

0-5 Hz

5 – 11 Hz
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Wavelet MultiResolution Analysis 
Wavelet → fk14 

Levels → 4
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Recurrent Neural networks
• Started with LSTMs, moved to GRUs 

instead 

• Started with 1 trace at a time, changed 

it to 3x3 trace to capture spatial 

correlation 

3
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Entire training data →

782 x590

~200 GB data 
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RNN Results on Validation Data 
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RNN Results on Test Data 

Data _test_1 predicted labels Data _test_2 predicted labels 
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FINAL SOLUTION

Results:

● Accuracy: how much accuracy 

did you achieve?

●Overall 93% on Validation 

data set

● Performance Numbers: With 

NVIDIA Volta GPU 

● ~3 Hours 

● Prediction time using GPU : 

● RNN : 2-3 mins for ~1000 traces



21

Deploy to Any Processor with Best-in-class Performance

All models in MATLAB and Simulink can be deployed on embedded devices, edge devices, 

enterprise systems, the cloud, or the desktop

FPGA

CPU

GPU
Code 

Generation

PLC
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Multi-Platform Deployment

ARM Microcontrollers 

Mobile
Raspberry pi

Beaglebone 

Desktop Data Center

FPGA 

…

Application 

logic

NVIDIA Jetson
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Function for deployment 15

15

1006

1006

15

15

Field sensors 

Streaming data 

Edge Device Processed output : Save to disk/server  
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Application 

logic

GPU 

Coder

NVIDIA

TensorRT &

cuDNN

cuFFT

cuBLAS

Intel

MKL-DNN

Library

MATLAB 

Coder 

Target Libraries

ARM

Compute

Library

CMSIS 

…

Edge GPU Deployment 
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Step1: Test generated C/C++/CUDA code in MATLAB 

CUDA Code with GPU Coder  
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Compare the speedups 

50x Speed Up
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Step 2 : Deploy on NVIDIA Jetson Target 

Directly supported hardware 
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Recap: Deploy to Any Processor with Best-in-class Performance

AIl models in MATLAB and Simulink can be deployed on embedded devices, edge devices, 

enterprise systems, the cloud, or the desktop

GPU

MATLAB Coder + 

Embedded Coder 

GPU Coder + 

Embedded Coder 

HDL Coder 

HDL Verifier 

Fixed Point Designer

Deep Learning HDL Toolbox  

FPGA

CPU

GPU
Code 

Generation

PLC PLC Coder 
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Additionally : Deploy to Enterprise IT Infrastructure

Request

Broker

MATLAB 

Production Server

Custom Tools

Streaming

Dashboards

Databases

Cloud Storage

Containers

Cloud & Datacenter 

Infrastructure
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Recap

▪ Building complex algorithms with 

low code / no code approach

▪ Easy Iterating signal processing + 

AI with MATLAB 

▪ Handling big data and scaling 

compute intensive algorithms –

AWS, NGC 

▪ Automated Edge computing 

deployment 
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Access to full code and article : 

https://blogs.mathworks.com/deep-learning/2021/08/03/mathworks-wins-geoscience-ai-gpu-hackathon/
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MathWorks Engineering Support

Guided EvaluationsTraining

Technical Support

ConsultingOnsite Workshops
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Further Learning & Teaching

▪ Wavelets Analysis with MATLAB

(7 hr Instructor led training)

– Continuous Wavelet Analysis

▪ Time frequency analysis 

▪ Wavelet coherence 

▪ Wavelet synchro-squeezing 

▪ Time-localized filtering 

– Discrete Wavelet Analysis 

▪ Multiresolution analysis 

▪ Denoising with wavelets 

▪ Wavelet packet transform 

– Wavelets for AI 

▪ Wavelet scattering networks 

▪ Wavelet for feature extraction 

Wavelets tech-talk series 

https://www.mathworks.com/videos/series/understanding-wavelets-121287.html


35

Further Learning & Teaching

▪ Deep Learning Onramp

– 2 hr online tutorial

▪ Deep Learning Workshop

– 3 hr hands on session

– Contact us to schedule

▪ Deep Learning Training

– 16 hr in depth course

– Online or Instructor Lead

▪ Teaching Deep Learning with 

MATLAB

– Curriculum support

Teaching 

Deep Learning

with MATLAB

Deep Learning

Onramp

https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html
https://www.mathworks.com/training-schedule/deep-learning-with-matlab.html
https://www.mathworks.com/academia/courseware/teaching-deep-learning-with-matlab.html
https://www.mathworks.com/academia/courseware/teaching-deep-learning-with-matlab.html
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Thank you ! 

Linkedin: 

www.linkedin.com/in/akhilesh-mishra-mathworks

Email :

amishra@mathworks.com

https://www.linkedin.com/in/akhilesh-mishra-b44b50121/
http://www.linkedin.com/in/akhilesh-mishra-mathworks
mailto:amishra@mathworks.com

