Dynamic Entropy Pooling: Portfolio Management with Views at Multiple Horizons

Attilio Meucci and Marco Nicolosì

Learn it: http://www.symmys.com/node/831 (paper and code)

Live it: Advanced Risk and Portfolio Management® Bootcamp
www.symmys.com/arpm-bootcamp
Background

The profit-and-loss (P&L)

The market model

Portfolio construction

Case studies
Background

The standard approach to discretionary portfolio management (Black-Litterman, Entropy Pooling) processes subjective views that refer to the distribution of the market at a specific single investment horizon.

The standard approach to multi-period portfolio management with market impact (Garleanu-Pedersen) processes non-discretionary (systematic) signals.

Dynamic Entropy Pooling is a quantitative approach to perform dynamic portfolio management with discretionary, multi-horizon views.

<table>
<thead>
<tr>
<th>Method</th>
<th>Discretionary</th>
<th>Multiperiod</th>
<th>Mkt impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grinold ('89)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Black-Litterman ('90)</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Entropy Pooling ('08)</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Davis-Lleo ('13)</td>
<td>×</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>Garleanu-Pedersen ('13)</td>
<td>×</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Dynamic Entropy Pooling</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

- The standard approach to discretionary portfolio management (Black-Litterman, Entropy Pooling) processes subjective views that refer to the distribution of the market at a specific single investment horizon.
- The standard approach to multi-period portfolio management with market impact (Garleanu-Pedersen) processes non-discretionary (systematic) signals.
- Dynamic Entropy Pooling is a quantitative approach to perform dynamic portfolio management with discretionary, multi-horizon views.
Agenda

Background

The profit-and-loss (P&L)

The market model

Portfolio construction

Case studies
The profit-and-loss (P&L)

• We assume the single-period P&L is a set of exposures multiplied by the increments of the risk drivers over the rebalancing period:

\[\Pi_{t+1} = b'_t \Delta X_{t+1} \]

• The set of risk drivers can be extended to include also external factors that do not affect directly the P&L of the instruments. On such additional factors we can express views that influence the P&L through correlation. The corresponding entries in the exposures vector will be set to zero.
We assume the single-period P&L is a set of exposures multiplied by the increments of the risk drivers over the rebalancing period:

$$\Pi_{t+1} = b_t' \Delta X_{t+1}$$

The set of risk drivers can be extended to include also external factors that do not affect directly the P&L of the instruments. On such additional factors we can express views that influence the P&L through correlation. The corresponding entries in the exposures vector will be set to zero.

Consider an equity share or an index. Then the risk driver is its log-value:

$$X_t = \ln V_t$$

The P&L of a portfolio with $h_{n,t}$ shares in the n-th asset is:

$$\Pi_{t+1} = \sum_n h_{n,t} V_{n,t} \times \left(\frac{V_{n,t+1}}{V_{n,t}} - 1 \right) \approx \sum_n b_{n,t} \Delta X_{n,t+1}$$

More in general, in terms of a style/risk linear factor model:

$$\Pi_{t+1} = \sum_k b_{k,t}^{style} \Delta X_{k,t+1}^{style}$$
- We assume the single-period P&L is a set of exposures multiplied by the increments of the risk drivers over the rebalancing period:
 \[\Pi_{t+1} = b'_t \Delta X_{t+1} \]

- The set of risk drivers can be extended to include also external factors that do not affect directly the P&L of the instruments. On such additional factors we can express views that influence the P&L through correlation. The corresponding entries in the exposures vector will be set to zero.

- Suppose that the \(n \)-th asset is a fixed income instrument. Its value at the first order satisfies
 \[\Pi_{n,t+1} \approx -\sum_k dv01_{n,k,t} \Delta Y_{k,t+1} \]
 where \(Y_{k,t} \) is the \(k \)-th key-rate on the yield curve; \(dv01_{n,k,t} \) is the dollar-sensitivity of the \(n \)-th instrument to \(Y_{k,t} \).

- Then the P&L due to a set of fixed income instruments is:
 \[\Pi_{t+1} \approx \sum_k \left(-\sum_n h_{n,t} dv01_{n,k,t} \right) b_{k,t} \Delta X_{k,t+1} \]
The profit-and-loss (P&L)

- We assume the single-period P&L is a set of exposures multiplied by the increments of the risk drivers over the rebalancing period:

\[\Pi_{t+1} = b'_t \Delta X_{t+1} \]

- The set of risk drivers can be extended to include also external factors that do not affect directly the P&L of the instruments. On such additional factors we can express views that influence the P&L through correlation. The corresponding entries in the exposures vector will be set to zero.

For a stock option, the risk drivers are the log-value of the underlying and the implied volatility \(X_t = \ln V_t \) and \(\sum_t^{\text{impl}} \)

- Then for a portfolio of stock options, the P&L is:

\[\Pi_{t+1} \approx \sum_n \left(h_{n,t} \delta_{n,t} V_{n,t} \Delta X_{n,t+1} + h_{n,t} \nu_{n,t} \Delta \sum_t^{\text{impl}} \right) b_{\delta_{n,t}} + b_{\nu_{n,t}} \]

where \(\delta_{n,t} \) and \(\nu_{n,t} \) are the delta and vega of the \(n \)-th option.
Agenda

Background

The profit-and-loss (P&L)

The market model

Portfolio construction

Case studies
• Consider a book of assets driven by a set of \(\bar{n} \) risk drivers \(\mathbf{X}_t \) (interest rates, implied volatility surfaces, log-prices, etc.)

• We assume that the drivers follow a MVOU process:

\[
dX_t = (-\theta \mathbf{X}_t + \mu) \, dt + \sigma d\mathbf{W}_t
\]

• Choose a set of discrete monitoring dates \(t, t + 1, \ldots, \bar{t} \)

• Stack the process at the monitoring times as follows:

\[
\mathbf{X}_{t \rightarrow \bar{t}} \equiv \begin{pmatrix} \mathbf{X}_t \\ \mathbf{X}_{t+1} \\ \vdots \\ \mathbf{X}_{\bar{t}} \end{pmatrix}
\]

• Then the process is jointly multivariate normal at all times

\[
\mathbf{X}_{t \rightarrow \bar{t}} | \mathbf{i}_t \sim N(\mu_{t \rightarrow \bar{t}}, \sigma^2_{t \rightarrow \bar{t}})
\]
Market model

• The expectation vector of the is

\[
\mu_{t \rightarrow \tilde{t}} \equiv \left(e^{-0\theta} x_t + (\mathbb{I}_n - e^{-0\theta}) \theta^{-1} \mu, e^{-1\theta} x_t + (\mathbb{I}_n - e^{-1\theta}) \theta^{-1} \mu, e^{-\bar{t} - t}\theta x_t + (\mathbb{I}_n - e^{-\bar{t} - t}\theta) \theta^{-1} \mu \right)
\]

• The covariance matrix is

\[
\sigma_{t \rightarrow \tilde{t}}^2 \equiv \left(\begin{array}{cccc}
\sigma_0^2 & \sigma_0^2 e^{-\theta'} & \sigma_0^2 e^{-2\theta'} & \sigma_0^2 e^{-\bar{t} - t}\theta' \\
\sigma_0 e^{-\theta} \sigma_0^2 & \sigma_1^2 & \sigma_1^2 e^{-\theta'} & \sigma_1^2 e^{-\bar{t} - t - 1}\theta' \\
e^{-2\theta} \sigma_0^2 & \sigma_1 e^{-\theta} \sigma_1^2 & \sigma_2^2 & \cdot \\
e^{-\bar{t} - t}\theta \sigma_0^2 & e^{-\theta} \sigma_1^2 & e^{-\bar{t} - t}\theta \sigma_2^2 & \sigma_{\bar{t} - t}^2
\end{array} \right)
\]

where

\[
vec(\sigma^2_{\tau}) \equiv (\theta \oplus \theta)^{-1} \left(\mathbb{I}_n^2 - e^{-(\theta \oplus \theta)\tau} \right) vec(\sigma^2)
\]

Dynamic Entropy Pooling: Portfolio Management with Views at Multiple Horizons
We extend the Entropy Pooling approach in Meucci (2010) to the case of multiple horizons

- **The prior**: assume a model for the joint distribution of the process at the monitoring times:

 \[X_{t \rightarrow t'} | i_t \sim f \]

- **The views**: are statements (constraints) on the yet-to-be defined distribution of the process:

 \[g \in \mathcal{V}_t \]

- **The posterior**: is the closest distribution to the prior that satisfies the views:

 \[\overline{f} \equiv \arg\min_{g \in \mathcal{V}_t} \{ \mathcal{E}(g, f) \} \]

 where the “distance” is the relative entropy

 \[\mathcal{E}(g, f) \equiv \int g(x_t, \ldots, x_{t'}) \ln \frac{g(x_t, \ldots, x_{t'})}{f(x_t, \ldots, x_{t'})} \, dx_t \cdots dx_{t'} \]
We extend the Entropy Pooling approach in Meucci (2010) to the case of multiple horizons

- **The prior**: assume a MVOU model for the joint distribution of the process at the monitoring times

\[X_{t \sim \bar{t}} \mid i_t \sim N(\mu_{t \sim \bar{t}}, \sigma_{t \sim \bar{t}}^2) \]

- **The views**: are statements (constraints) on the yet-to-be-defined distribution of the process:

\[\mathcal{V}_t : \left\{ \begin{array}{l} \mathbb{E}_t^g \{ \nu_{t \mu} X_{t \sim \bar{t}} \} \equiv \mu_{\text{view};t} \\
\mathbb{C}_t^g \{ \nu_{t \sigma} X_{t \sim \bar{t}} \} \equiv \sigma_{\text{view};t}^2. \end{array} \right. \]

where \(\nu_{t \mu} \) and \(\nu_{t \sigma} \) are matrices that defines arbitrary linear combinations of the process at the times for the views.

- **The posterior**: is the closest distribution to the prior that satisfies the views:

\[\bar{f} \equiv \arg\min_{g \in \mathcal{V}_t} \{ \mathcal{E}(g, f) \} \Rightarrow X_{t \sim \bar{t}} \mid i_t \sim N(\bar{\mu}_{t \sim \bar{t}}, \bar{\sigma}_{t \sim \bar{t}}^2) \]
Market model

\[X_{t\rightarrow t} | i_t \sim N(\mu_{t\rightarrow t}, \sigma_{t\rightarrow t}^2) \]

- For the expectation, we introduce the pseudo inverse matrix of \(\mathbf{v}_{\mu,t} \)

\[\mathbf{v}_{\mu,t}^+ \equiv \sigma_{t\rightarrow t}^2 \mathbf{v}_{\mu,t}'(\mathbf{v}_{\mu,t} \sigma_{t\rightarrow t}^2 \mathbf{v}_{\mu,t}')^{-1} \]

we define the two complementary projectors:

\[\mathbb{P}_{\mu,t} \equiv (\mathbb{I}_{\bar{n}(\bar{t}-t+1)} - \mathbf{v}_{\mu,t}^+ \mathbf{v}_{\mu,t}) \quad \mathbb{P}^\perp_{\mu,t} \equiv \mathbf{v}_{\mu,t}^+ \mathbf{v}_{\mu,t} \]

Then

\[\mu_{\mu_{t\rightarrow \bar{t}}} \equiv \mathbb{P}_{\mu,t} \mu_{t\rightarrow \bar{t}} + \mathbb{P}^\perp_{\mu,t}(\mathbf{v}_{\mu,t}^+ \mathbf{v}_{\mu,t}) \]

- Similar, for the covariance we introduce the pseudo inverse of \(\mathbf{v}_{\sigma,t} \)

\[\mathbf{v}_{\sigma,t}^+ \equiv \sigma_{t\rightarrow \bar{t}}^2 \mathbf{v}_{\sigma,t}'(\mathbf{v}_{\sigma,t} \sigma_{t\rightarrow \bar{t}}^2 \mathbf{v}_{\sigma,t}')^{-1} \]

and the two complementary projectors:

\[\mathbb{P}_{\sigma,t} \equiv \mathbb{I}_{\bar{n}(\bar{t}-t+1)} - \mathbf{v}_{\sigma,t}^+ \mathbf{v}_{\sigma,t} \quad \mathbb{P}^\perp_{\sigma,t} \equiv \mathbf{v}_{\sigma,t}^+ \mathbf{v}_{\sigma,t} \]

Then

\[\sigma_{t\rightarrow \bar{t}}^2 \equiv \mathbb{P}_{\sigma,t} \sigma_{t\rightarrow \bar{t}}^2 \mathbb{P}_{\sigma,t} + \mathbb{P}^\perp_{\sigma,t}(\mathbf{v}_{\sigma,t}^+ \mathbf{v}_{\sigma,t}^2 \mathbf{v}_{\sigma,t}^2)(\mathbb{P}^\perp_{\sigma,t})' \]
Agenda

Background

The profit-and-loss (P&L)

The market model

Portfolio construction

Case studies
As in Garleanu and Pedersen (2013), the satisfaction functional is an infinite sum of discounted trade-offs:

$$S_t^{(\gamma, \eta)} \equiv \sum_{s=t}^{\infty} e^{-\lambda(s-t)} \left[\mathbb{E}\left\{ \prod_{(s,s+1]} I_t \right\} - \frac{\gamma}{2} \mathbb{V}\left\{ \prod_{(s,s+1]} I_t \right\} - \frac{\eta}{2} \mathbb{E}\left\{ MI_s | I_t \right\} \right]$$

where the market impact is a quadratic function of the exposure rebalancing

$$MI_t = a^2 + \Delta b_t' c^2 \Delta b_t$$

with c^2 a suitable positive definite matrix. Note the term a^2, which represents the average cost of maintaining constant exposures
Given that the P&L is linear in the exposures $\Pi_{t+1} = b'_t \Delta X_{t+1}$, we need to solve for the optimal policy of exposures as functions of information:

$$\{b^*_s = p^*_s(i_s)\}_{s \geq t}$$

where

$$\{p^*_s\}_{s \geq t} = \operatorname{argmax}_{\{p_s\}_{s \geq t} \in \mathcal{C}} \mathbb{E}_t \left\{ \sum_{s=t}^{\infty} e^{-\lambda(s-t)} [p_s(I_s)' \omega \mathbb{E}_s \{\Delta X_{s+1}\} - \frac{\gamma}{2} p_s(I_s)' \omega \mathbb{C} v_s \{\Delta X_{s+1}\} \omega' p_s(I_s) - \frac{\eta}{2} \Delta p_s(I_s)' c^2 \Delta p_s(I_s)] \right\}$$

As in Garleanu and Pedersen (2013), the satisfaction functional is an infinite sum of discounted trade-offs:

$$\overline{S}_t^{(\gamma, \eta)} \equiv \sum_{s=t}^{\infty} e^{-\lambda(s-t)} [\mathbb{E}\{\Pi_{(s,s+1)}|i_t\} - \frac{\gamma}{2} \mathbb{V}\{\Pi_{(s,s+1)}|i_t\} - \frac{\eta}{2} \mathbb{E}\{MI_s|i_t\}]$$

where the market impact is a quadratic function of the exposure rebalancing

$$MI_t = a^2 + \Delta b'_t c^2 \Delta b_t$$

with c^2 a suitable positive definite matrix. Note the term a^2, which represents the average cost of maintaining constant exposures.
• Given that the P&L is linear in the exposures $\Pi_{t+1} = b'_t \Delta X_{t+1}$, we need to solve for the optimal policy of exposures as functions of information

$$\{b^*_s = p^*_s(i_s)\}_{s \geq t}$$

where

$$\{p^*_s\}_{s \geq t} = \arg\max \{p_s\}_{s \geq t} \in \mathbb{C} \mathbb{E}_t \left\{ \sum_{s=t}^{\infty} e^{-\lambda(s-t)} [p_s(I_s)'\omega \mathbb{E}_s\{\Delta X_{s+1}\} - \frac{\gamma}{2} p_s(I_s)'\omega \mathbb{E}_s\{\Delta X_{s+1}\}\omega' p_s(I_s) - \frac{\eta}{2} \Delta p_s(I_s)'c^2 \Delta p_s(I_s)] \right\}$$

• Dynamic programming with a quadratic value function yields a recursive problem with time-dependent coefficients

$$v_{s+1}(b_s, x_{s+1}) = -\frac{1}{2} b'_s \psi_{bb,s} b_s + b'_s \psi_{bx,s} x_{s+1} + \frac{1}{2} x'_{s+1} \psi_{xx,s} x_{s+1} + \psi'_b b_s + \psi'_x x_{s+1} + \psi_{0,s}$$

$$\iff \psi_{s-1} = g_s(\psi_s)$$

• The optimal policy of exposures then reads

$$b^*_s = \left(\frac{\gamma \omega \sigma^2_s \omega' + \eta c^2 + e^{-\lambda} \psi_{bb,s}}{\eta c^2 b_{s-1}} \right)^{-1} \left[\frac{\eta c^2 b_{s-1}}{\text{legacy exposures}} + (\omega \beta_s + e^{-\lambda} \psi_{bx,s}(\beta_s + \Pi_n)) x_s + (\omega + e^{-\lambda} \psi_{bx,s}) \alpha_s + e^{-\lambda} \psi_{b,s} \right]$$

- current risk drivers
- (\#) future views
Dynamic Entropy Pooling: Portfolio Management with Views at Multiple Horizons

Portfolio construction

- Given that the P&L is linear in the exposures $\Pi_{t+1} = b'_t \Delta X_{t+1}$, we need to solve for the optimal policy of exposures as functions of information

$$\{b^*_s = p^*_s(i_s)\}_{s \geq t}$$

where

$$\{p^*_s\}_{s \geq t} = \text{argmax}_{\{p_s\}_{s \geq t}} \mathbb{E}_t \{ \sum_{s=t}^{\infty} e^{-\lambda(s-t)} [p_s(I_s)' \omega \mathbb{E}_s \{\Delta X_{s+1}\} - \frac{\gamma}{2} p_s(I_s)' \omega \mathbb{E}_s \{\Delta X_{s+1}\} \omega' p_s(I_s) - \frac{\eta}{2} \Delta p_s(I_s)' c^2 \Delta p_s(I_s)] \}$$

- With no market impact, we obtain a series of myopic one-period problems
- The optimal policy is a sequence of mean-variance optimizations based on the posterior distribution of the risk drivers process

$$b^*_s = \frac{1}{\gamma} (\omega \sigma_s^2 \omega')^{-1} \omega (\mathbb{P}_{\mu, s})_{s+1, \Delta \mu_{s \to t}} L o n g T e r m \quad \text{Long Term}$$

$$b^*_s = \frac{1}{\gamma} (\omega \sigma_s^2 \omega')^{-1} \omega (\mathbb{P}_{\mu, s})_{s+1, \Delta \mu_{s \to t}} View Mean$$

$$b^*_s = \frac{1}{\gamma} (\omega \sigma_s^2 \omega')^{-1} \omega (\mathbb{P}_{\mu, s})_{s+1, \Delta \mu_{s \to t}} View Mean$$

$$\mathbb{V}_{\mu, s} \mu_{\text{view};s} - x_s$$

Meucci – Nicolosi
Agenda

Background

- The profit-and-loss (P&L)

The market model

Portfolio construction

Case studies
Case studies

One risk driver, one view
Case studies

Two risk drivers (one investable), two views

[Graphs showing exposure and loss rate for different risk drivers and views, with comparisons and simulations.]