

Model-Based E-Drive Dimensioning

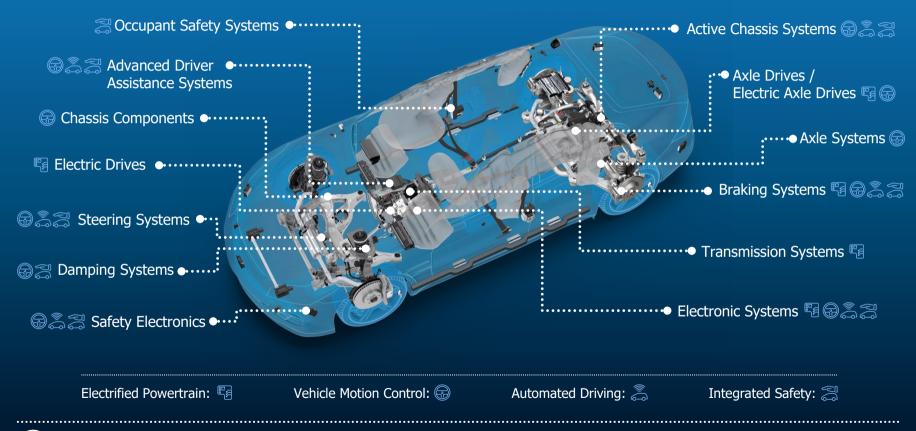
Dr. Florian Loos, Navid Daniali, Dr. Markus Schäfer | E-Mobility

MathWorks
AUTOMOTIVE CONFERENCE 2020
EUROPE

Agenda

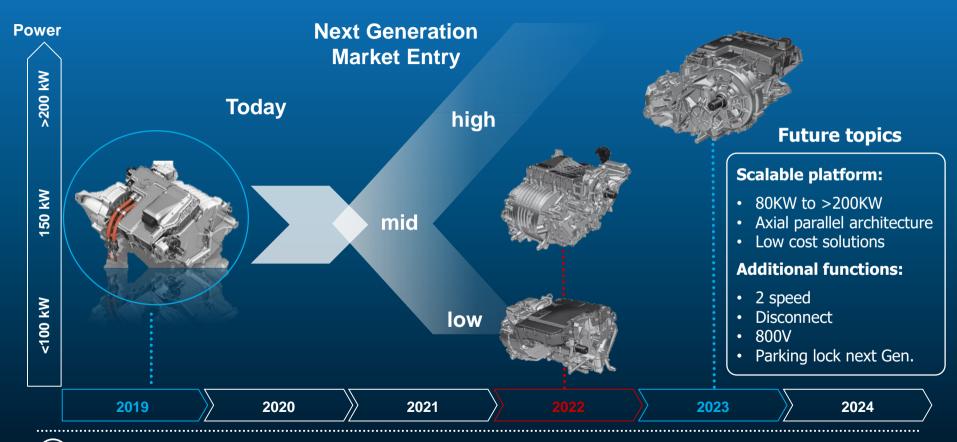
- E-Mobility @ ZF
- 2. E-Drive Concept
- 3 Matlab Inverter Model
- **4** Applications
 - Conclusion & Outlook

5.

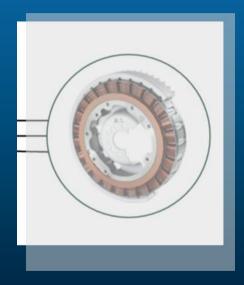

01 E-Mobility @ ZF

ZF Technology Domains

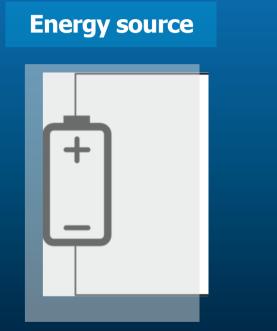
ZF Systems Expertise



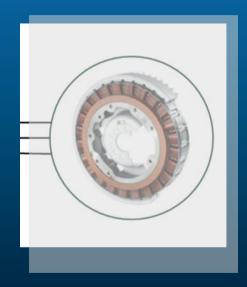
ZF electrifies everything on wheels From bikes and cars to trucks and buses

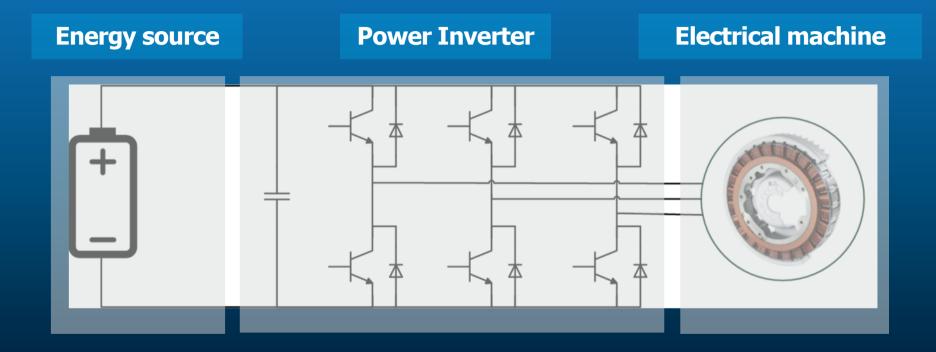

The see think

Roadmap Electric Vehicle Drive


E-Drive Concept

Electrical machine

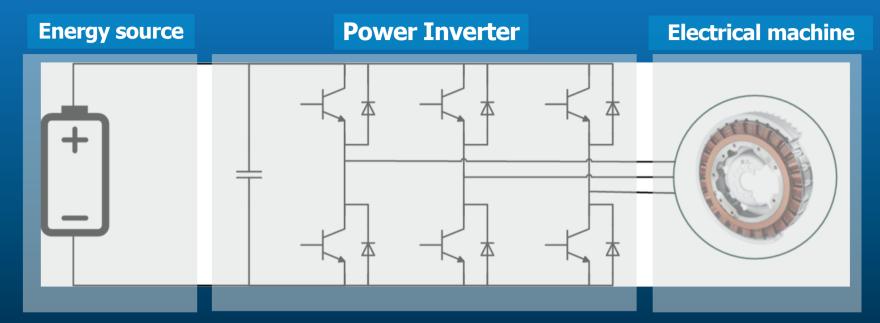



......

Electrical machine

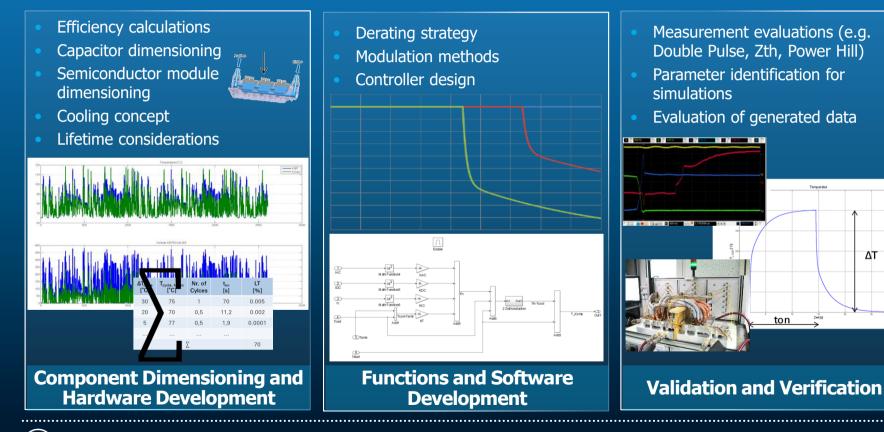
Power Inverter vs. Electric Cettle

Volume	4.1 dm³	3.0 dm³
Power Output	150 kW	2.2 kW
Max. Power Loss	5 kW	0
(Heating) Power / Area	139 W/cm ²	19 W/cm ²



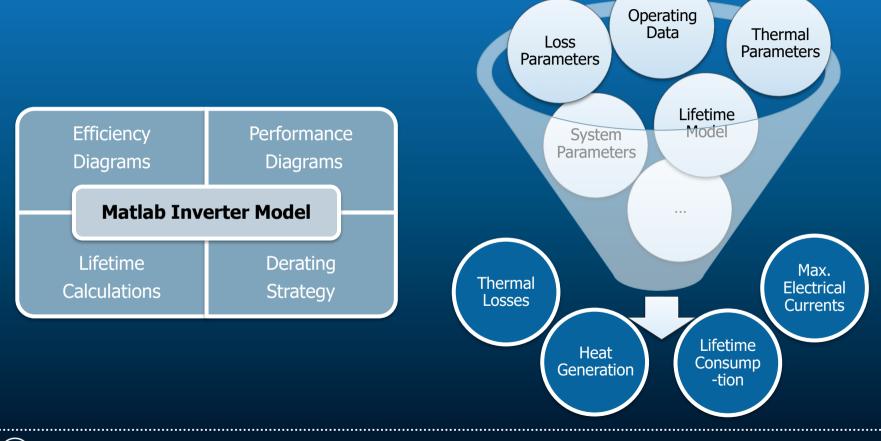
Power Inverter in action - "138M/cm²"

......



CHALLENGE: Development of an E-Drive system that is

- efficient,
- highly performant and
- very resistant to damages.


Fields of Application of Matlab/Simulink @ ZF E-Drive Systems

03 Matlab Inverter Model

Matlab Inverter Model

Structure Inverter Model

Lines of Matlab Code ~10,000

Σ Simulink Blocks >>3,000

ca. 10 years of development

Œ

04 Applications

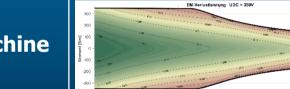
Efficiency and Performance Calculations

CO₂ reduction: Every gram counts

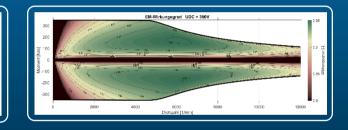
Conventional drivelines

Hybrid drivelines

Electric drivelines

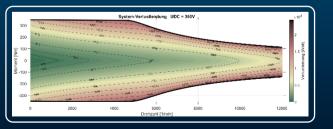

Example of Loss and Efficiency Calculation

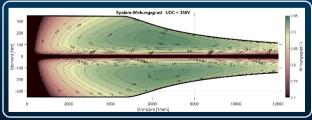
LE-Merivalieidung UDC - 330V


Losses

Efficiency

LE Winkingegrad UDC = 390'

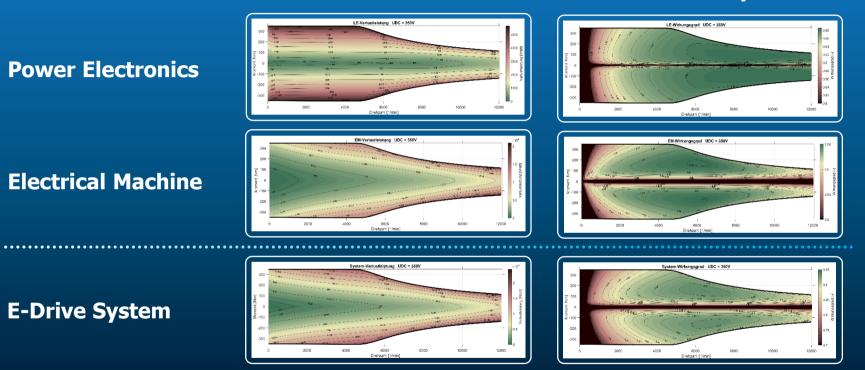

4000


Electrical Machine

Power Electronics

E-Drive System

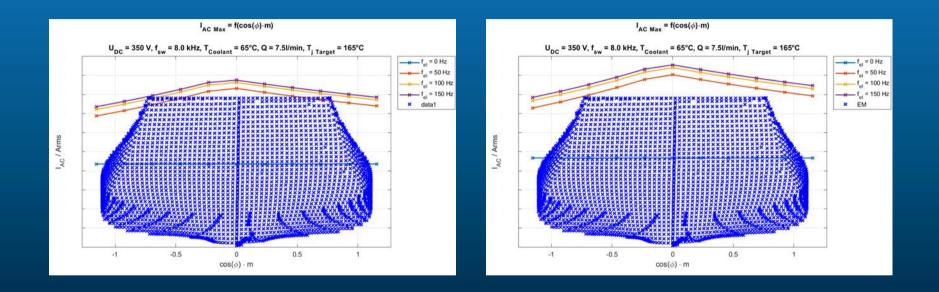
6000 Drehzahl (1/min



(**TF**)

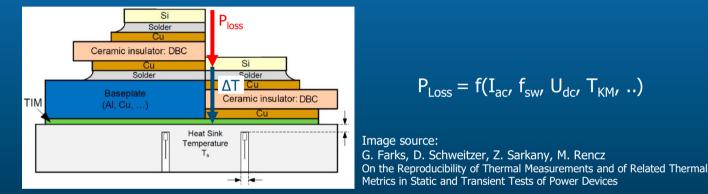
Example of Loss and Efficiency Calculation

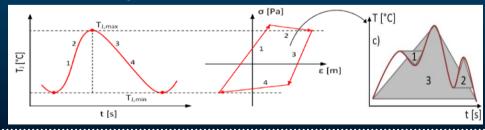
Losses


Efficiency

 \rightarrow Losses and efficiency of entire E-Drive system calculated over torque and speed range

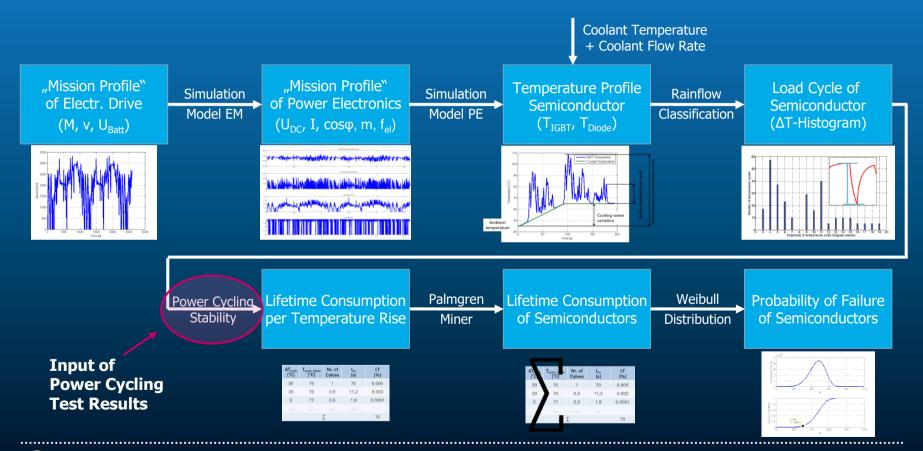
Matching of E-Machine and Power Inverter


\rightarrow Left inverter undersized, right one appropriate for electrical machine

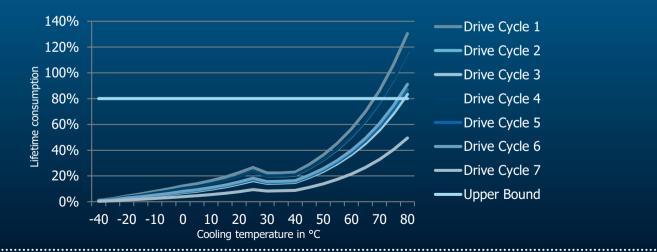

Lifetime Prediction

Lifetime Simulation Semiconductor

- Different extension coefficients result in thermal stress.
- Each junction can absorb a certain amount of energy and will fail afterwards.



• To predict time to failure of each junction, thermal stress has to be described mathematically.



Workflow Lifetime Predicition

Example of Lifetime Prediction

	Cooling temperature in °C																				
	-40	-30	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
Drive Cycle 1	1,255%	2,409%	4,481%	6,046%	8,104%	10,021%	12,313%	13,961%	16,357%	19,063%	<mark>2</mark> 2,560%	2 <mark>6,583%</mark>	<mark>2</mark> 2,326%	<mark>2</mark> 2,372%	22,964%	28,918%	<mark>36</mark> ,264%	<mark>45</mark> ,296%	56, <mark>3</mark> 61%	<mark>69,8</mark> 69%	<mark>86,30</mark> 8%
Drive Cycle 2	1,051%	2,013%	3,734%	5,032%	6,734%	8,382%	10,373%	11,960%	14,125%	16,591%	19,713%	23,320%	19,845%	20,034%	20,600%	<mark>2</mark> 5,923%	<mark>32</mark> ,485%	40,546%	50,412%	<mark>62,4</mark> 44%	77,073%
Drive Cycle 3	0,716%	1,365%	2,522%	3,391%	4,528%	5,658%	7,031%	8,204%	9,753%	11,539%	13,770%	16,365%	14,232%	14,544%	15,034%	18,883%	<mark>2</mark> 3,618%	<mark>2</mark> 9,419%	<mark>36</mark> ,504%	45,124%	<mark>55,</mark> 578%
Drive Cycle 4	1,043%	1,994%	3,691%	4,967%	6,640%	8,268%	10,237%	11,835%	13,999%	16,474%	19,598%	23,216%	19,935%	20,229%	20,848%	<mark>2</mark> 6,205%	32,800%	40,889%	50 <mark>,</mark> 776%	<mark>62,8</mark> 18%	77,437%
Drive Cycle 5	0,765%	1,461%	2,703%	3,636%	4,858%	6,060%	7,518%	8,734%	10,358%	12,223%	14,563%	17,278%	14,925%	15,185%	15,653%	19,667%	<mark>2</mark> 4,607%	<mark>3</mark> 0,662%	<mark>38</mark> ,060%	47,065%	<mark>57,9</mark> 91%
Drive Cycle 6	0,819%	1,563%	2,891%	3,888%	5,195%	6,475%	8,023%	9,294%	11,001%	12,954%	15,412%	18,256%	15,674%	15,888%	16,360%	20,556%	<mark>2</mark> 5,720%	<mark>32</mark> ,051%	<mark>39</mark> ,786%	<mark>49,</mark> 201%	60,626%
Drive Cycle 7	0,398%	0,760%	1,406%	1,893%	2,530%	3,170%	3,950%	4,631%	5,526%	6,561%	7,856%	9,365%	8,241%	8,489%	8,827%	11,098%	13,894%	17,324%	21,518%	<mark>2</mark> 6,627%	<mark>3</mark> 2,830%
Distr. Cold	0,10%	0,20%	0,30%	0,70%	2,00%	3,00%	5,00%	15,00%	26,10%	25,70%	13,30%	5,00%	2,00%	1,00%	0,50%	0,10%	0,00%	0,00%	0,00%	0,00%	0,00%
Distr. Hot	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,10%	0,50%	0,50%	1,30%	2,20%	4,70%	14,00%	27,10%	25,80%	14,70%	6,70%	1,60%

05 Conclusion & Outlook

Conclusion & Outlook

Conclusion

- Challenge: E-Drive system \rightarrow efficient, highly performant and persistent
- Development of Matlab/Simulink environment: enables evaluation of efficiency, performance, lifetime
- Entire E-drive system can be correctly dimensioned, improved and optimized by simulation!

Outlook

- Increase of level of automation
- Combining Matlab/Simulink environment with CAD-, FEM- and CFD-simulation environments
- Integration of EMC simulation in our simulation environment

Questions & Answers

Contact: florian.loos@zf.com

