Virtual Vehicle Application: Battery Cooling Network Study

MathWorks AUTOMOTIVE CONFERENCE 2020

Virtual Vehicle Application: Battery Cooling Network Study

Key Takeaways

- Battery cooling network design requires component level analysis and tests within a full-vehicle simulation
- Integrating fluid, thermal, electrical, and mechanical domains is key to assessing system-level performance
- Rapid simulations covering a wide range of drive cycles and ambient conditions are needed to evaluate design criteria

Agenda

- Importance of Battery Cooling
- Exploring Battery Cooling Network Designs
- Integration in Vehicle Model
- Evaluation of Design in Full Vehicle Tests

Why Explore Battery Cooling?

- Electrification is a cross-industry market driver
 - Power, heating, transportation
 - Shift to electric and hybrid powertrains
- Key to success: efficiency and safety

EV Sales and Market Share

Agenda

- Importance of Battery Cooling
- Exploring Battery Cooling Network Designs
- Integration in Vehicle Model
- Evaluation of Design in Full Vehicle Tests

- Requirements
 - Cell temperature range: 20-40 °C
 - Cell temperature max delta: 8 °C
- Evaluation
 - Hot and cold environments
 - Driving conditions (FTP75, US06, WOT, etc.)
 - Charge cycle
- Two options considered
 - One-pass
 - Two-pass

Design Process for Battery Cooling Network

1. Explore designs

Design Process for Battery Cooling Network

- 1. Explore designs
- 2. Integrate in vehicle model

Design Process for Battery Cooling Network

- 1. Explore designs
- 2. Integrate in vehicle model
- 3. Perform full vehicle tests

Design Challenge: Battery Cooling Network Modeling and Simulation Options

CFD and FEA

- Accurate, but computation intensive

Spreadsheet

- Accessible, but limited scalability
- Limited options for integrating other models

Lumped parameter physical networks

- Less accurate than CFD, but scalable
- Appropriate for system-level analysis
- Integrates well with other domains including control algorithms

Computational Time vs. Model Complexity

Model Complexity & Detail

Simscape: Build Accurate Models Quickly

- Simply connect the components you need
- The more complex the system, the more value you get from Simscape
- Resulting model is intuitive, easy to modify, and easy for others to understand

Physical Modeling Within Simulink

- Simulink is best known for signal-based modeling

 Causal, or input/output
- Simscape enables bidirectional flow of energy between components
- System level equations:
 - Formulated automatically
 - Solved simultaneously
 - Cover multiple domains

Simulink: Input/Output

Battery Model

- Modeled using Simscape
 - 60kWh total capacity (4 sections)
 - Equivalent circuit captures transient dynamics
 - Lookup tables: nonlinear and thermal effects
 - Battery aging can be included

Resistors, capacitor, and voltage source depend upon SOC, DOC, and temperature

Battery Pack

- Create test to compare the cooling network designs
- Lumped thermal model
 - Divided into four sections along flow path
- Heat transferred to different portions of the cooling channel

Battery Cooling Network

Physical connections in the Simscape model match architecture of design

Battery Cooling Network

- Simplify testing using Variant Subsystems
 - Swap in different cooling designs
 - Interactive or automated using MATLAB commands
- Same model, settings, and test set up
 - Input vectors
 - Results analysis

Cooling Network Test

- Fast charge (cooling critical)
 - 1. From 2% to 99% in 1 hour
 - 2. Range of coolant flow rates

Cooling Network Test

- Fast charge (cooling critical)
- Performance criteria
 - a. Maximum temperature
 - b. Temperature gradients
 - c. Pump power consumption

A MathWorks

Component Level Analysis

- Criteria 1: Temperature Range
 - For same flow rate, Two-Pass has lower maximum temperature
 - Acceptable range for either design

Component Level Analysis

- Criteria 1: Temperature Range
 - For same flow rate, Two-Pass has lower maximum temperature
 - Acceptable range for either design
- Criteria 2: Temperature Gradient
 - Both designs acceptable
 - Two-pass has very low temperature difference between sections

Component Level Analysis

- Criteria 3: Pump Power
 - One Pass requires less pump power than Two Pass for the same flow rate
 - Two Pass has smaller pipe diameter and longer channel

MathWorks

📣 MathWorks

Component Level Analysis

- Criteria 3: Pump Power
 - One Pass requires less pump power than Two Pass for the same flow rate
 - Two Pass has smaller pipe diameter and longer channel
- Test shows advantages of designs
- Now test system in vehicle
 - Control system, rest of physical system
 - See which criteria is most important

Agenda

- Importance of Battery Cooling
- Exploring Battery Cooling Network Designs
- Integration in Vehicle Model
- Evaluation of Design in Full Vehicle Tests

Electric Vehicle Model

Electric Vehicle Model

- Battery Electric vehicle
- 3-Motor Architecture
 - Rear: 40 kW Motor (2x)
 - Front: 60 kW Motor

Full Vehicle Test

- Integrate into Reference Application from Powertrain Blockset
 - Baseline model provides architecture
 - Extend to 3 motor system
- Use Model-Based Design to
 - Assess performance including fuel economy and acceleration
 - Develop control algorithms
 - Deploy to hardware

Pre-built reference applications

Powertrain Blockset

Library of blocks

Agenda

- Importance of Battery Cooling
- Exploring Battery Cooling Network Designs
- Integration in Vehicle Model
- Evaluation of Design in Full Vehicle Tests

Scenario Testing

- 342 simulations:
 - 2 cooling networks
 - 57 drive cycles
 - 3 temperatures: 0/20/40 °C
- Criteria
 - Temperature range: 20-40 °C
 - Temperature gradient: <8 °C
 - Total cooling energy
- Accelerate testing
 - Parallel Computing Toolbox

📣 Test Manager						
TESTS						
Image: New Open Save Image: Copy Delete Tege FILE Image: Copy Delete Tege FILE EDIT	st Spec Run Report •	Run with Stepper RU	Stop Para	llel Report	Visualize Hig	
Test Browser Results an	d Artifacts		De	sign A 🛛 🗙		
Filter tests by name or tags, e.g. tags: test ▼			TEST HARNESSSIMULATION SETTING			
Design A			► PA	PARAMETER OVERRIDES		
Design B			► CA	► CALLBACKS*		
✓ ☐ Ambient50C			▶ INPUTS			
 Design A Design B 			SIMULATION OUTPUTS* CONFIGURATION SETTING			

Results from One Drive Cycle

- Observations from 342 tests
 - Two Pass has lower temperature difference Less cell imbalance, better battery life
 - One Pass has lower energy consumption:
 Better fuel economy for same maximum temperature

Key Takeaways

- Battery cooling network design requires component level analysis and tests within a full-vehicle simulation
- Integrating fluid, thermal, electrical, and mechanical domains is key to assessing system-level performance
- Rapid simulations covering a wide range of drive cycles and ambient conditions are needed to evaluate design criteria

Products Used

- Battery Cooling Network
 Simscape, Simscape Fluids
- Electrical Network
 Simscape Electrical
 Simscape Driveline
- Vehicle and Environment
 Powertrain Blockset
- Testing

Simulink Test Parallel Computing Toolbox

Q&A

а

b

С

d

е

Which tasks shown in this presentation are most interesting to you?

- Battery Modeling
 - Cooling System Modeling
 - **Electrical Network Modeling**
- Full Vehicle Simulation
- Parameter Sweeps and Results Analysis

Please contact us with questions

smiller@mathworks.com

