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Question 1 (15 minutes): Solar Panel Parameters 

A solar panel consists of many photodiodes connected together to convert light into electrical 

power.  

Task 1: Write a function that returns the output voltage and current of a solar panel given the 

number of rows and columns of photodiodes in the solar panel. The equation that gives the 

output voltage and current of a solar panel is below. 

The function header: [Vout Iout] = solar_panel(Nrow, Ncol) 

������	����	
�	(����
) = ������	��	���
 ∗ 0.6	����
 

������	�������	(��) = ������	��	������
 ∗ 50	�� 

Task 2: The maximum output power of the solar panel is 90% of the product of the output 

voltage and output current.  

Using the function you wrote, write a script that calls this function to calculate the maximum 

output power for square solar panels with sides ranging from 10 photodiodes to 100 photodiodes. 

In a square solar panel, the number of rows is equal to the number of columns. 

Task 3: Do not modify the function ‘solar_panel()’, write code to plot the maximum output 

power for square solar panels versus the total number of photodiodes (for Nrow = Ncol = 10 to 

100) in the solar panel, for . (x-axis is the number of photodiodes) 
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Question 2 (20 minutes): Optimal Solar Panel Parameters 

A solar panel consists of many photodiodes (“pd”) connected together to convert light into 

electrical power.  

Task 1: Write a function that calculates the optimal output voltage and current (optimal voltage 

and current gives maximum output power) of a photodiode given an illumination condition.  

The function header:                                                                                            

[Voptimal Ioptimal] = pd_optimal(illum) 

where    ������	� = 1.5 ∗ 0.026 ∗ "log "&''()*+,,-./
0.1∗2034 5 + 15 − 0.093    and 

 :�����	� = �����_������� − 0.6 ∗ 10<1 =�">?@/ABCD
E.F∗G.GH4 5 − 1I 

where illum relates to illum_current as follows: (the equations above use illum_current, NOT 

illum. You decide how to look up illum_current based on illum) 

illum illum_current 

500 0.21 

600 0.3 

700 0.4 

800 0.5 

900 0.6 

1000 0.6 

1100 0.7 

1200 0.8 

1300 0.9 

1400 1.1 

 

Task 2: The maximum output power of the solar panel is simply the product of the optimal 

output voltage and output current.  

Using the function you wrote, write a script that calls this function to calculate the maximum 

output power for square solar panels with sides ranging from 10 photodiodes to 100 photodiodes. 

In a square solar panel, the number of rows is equal to the number of columns. Fix ‘illum’ to 

500. See the formulas below on how to calculate the output voltage and current of the solar 

panel, Vpanel and Ipanel. 

Vpanel = Nrow * Voptimal; 

Ipanel = Ncol * Ioptimal; 
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Task 3: Do not modify the function ‘pd_optimal()’, write code to plot the maximum output 

power of the square solar panels versus the total number of photodiodes (for Nrow = Ncol = 10 

to 100) in the solar panel, for . (x-axis is the number of photodiodes)  
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Question 3 (15 minutes): Measuring MATLAB Performance 

Task:  We will explore the power of MATLAB by implementing our own ‘.*’ operator using a 

simple for loop. Hopefully you will truly appreciate the built-in MATLAB operators/functions 

after this task. 

Step 1: Create two 1000x1000 matrices, each containing random numbers by using     

‘x = rand(1000);  y = rand(1000)’ 

Step 2: Perform an element-wise multiply of the two matrices, x and y. Store the result to a 

matrix z. 

Step 3: We will now implement our own ‘.*’ operator. Write a nested for-loop such that the outer 

loop iterates through each element in each row, and the inner loop iterate through each element 

in each column. Inside the inner loop, multiply the element in x with the element in y. Store the 

result in z, at the same location as x and y. 

Step 4: We will now use MATLAB’s built-in timer to time the two approaches, and compare 

them. Use the command ‘tic’ to start the timer. Use the command ‘toc’ to stop the timer. Place 

‘tic’ just before the ‘z = x.*y’’ statement, and place ‘toc’ just after it. If you run the code now, 

you should see something like the following: 

Elapsed time is 0.008232 seconds. 

 

Step 5: Now place ‘tic’ just before the outer for-loop, and place ‘toc’ just after the outer for-loop 

terminates. Run the code. You should see something similar to the output in Step 4. 

Step 6: Compare the times you obtained in Step 4 and Step 5. For this task, how much faster is 

the MATLAB’s implementation of the element-wise operator than your nested for-loop 

implementation?  

The lesson in this task is that you should always be careful when using loops to process large 

amounts of data. Taking the extra time to learn built-in MATLAB operators/commands can be 

very useful and saves you hours in simulation time. 
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Question 4 (15 minutes): Delay in Using Functions 

Task:  We will explore the delay incurred from using a function, as opposed to keeping all code 

inside the same script.  

Step 1: Write code that performs element-wise addition of two vector variables. You may 

assume the two variables will always be the same size. Use rand() to initialize the two vectors. 

Step 2: Place the code from Step 1 inside a for-loop that runs for one million times. 

Step 3: Create a new function called ‘myadd’. Copy the code you wrote in Step 1 and place it 

inside this function. Note: this function should take two input arguments, and return one output 

argument.  Save the function/file. 

Step 4: We will now use MATLAB’s built-in timer, tic and toc to compare the two approaches. 

Use the command ‘tic’ to start the timer. Use the command ‘toc’ to stop the timer.  

In the same script as Step 2, place ‘tic’ just before the code segment, and place toc right after the 

code segment. If you run the code now, you should see something like the following: 

Elapsed time is 0.008232 seconds. 

 

Step 5: Now adding to the script in Step 4, write code to call the function ‘myadd()’ a million 

times. Place tic and toc before and after the function call, respectively. Run the code. You should 

see something similar to the output below, where the first line is the result for performing 

element-wise addition by calling ‘myadd()’, and the second line is the result without using a 

function. We see that using a function incurs a large delay in code execution time. 

Elapsed time is 4.128054 seconds. 

Elapsed time is 0.320287 seconds. 

>> 

 

The lesson in this task is that you should always be careful when calling a function many times. 

Taking the extra time to think about whether the contents of a function should really be simply 

placed inside the main script can potentially save hours of simulation time. 
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Question 5 (20 minutes): Comparing Fixed and Tracking Solar Panel Configurations 

Fixed-tilt solar panel is a type of solar panel configuration where the panels do not track the 

movement of the sun. The panel simply faces the South (if you are north of the equator), and is 

tilted at an angle equal to the panel’s geographical latitude from the normal. This configuration is 

simple and is relatively inexpensive. Table 1 below contains the output voltages and currents of a 

fixed solar panel at different load conditions. 

Single-axis tracking solar panel is a type of solar panel configuration where the solar panels 

track the movement of the sun as it moves across the sky. The solar panel’s tilt angle is fixed, but 

it does not just face South, its orientation can rotate from east to west. As you can see, this 

configuration potentially yields a higher power output but comes at a cost of more complex 

electronics. Table 2 below contains output voltages and currents of a single-axis tracking solar 

panel 

A third configuration, double-axis tracking tracks both the sun’s movement throughout the day 

and its altitude as the season changes. We will not be discussing this configuration in this lab.  

 Fixed-Tilt, no tracking 

Load 

Condition 

Voltage Current 

1 0.424 0.0338 

2 0.628 0.0338 

3 1.282 0.0338 

4 1.832 0.0336 

5 2.808 0.0336 

6 3.948 0.033 

7 4.88 0.033 

8 8.718 0.032 

9 11.642 0.031 

10 14.45 0.0286 

11 16.644 0.021 

12 17.18 0.017 

13 17.632 0.012 

14 17.928 0.008 

15 18.086 0.0052 

16 18.168 0.004 

17 18.242 0.0028 

18 18.27 0.002 

Table 1. Output voltages and currents of a solar panel under various load conditions. 
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 Single Axis Tracking 

Load 

Condition 

Voltage Current 

1 1.844 0.1462 

2 2.738 0.146 

3 5.578 0.1454 

4 7.932 0.1446 

5 12.018 0.1426 

6 16.218 0.1356 

7 17.562 0.1192 

8 18.922 0.0738 

9 19.304 0.0514 

10 19.488 0.0384 

11 19.658 0.025 

12 19.722 0.019 

13 19.776 0.0132 

14 19.816 0.0088 

15 19.84 0.006 

16 19.852 0.004 

17 19.862 0.003 

18 19.864 0.002 

Table 2. Output voltages and currents of a single-axis tracking solar panel. 

 

In the tasks below, we will use the technique of curve fitting to find an equation to model the 

data above.  

 

Task 0:  Type ‘load q5.mat to load the input vectors, fix and single. fix and single both contains 

two columns; first column is the solar panel’s output voltage and second column is the current. 

The content of fix is shown in Table 1 above. The content of single is shown in Table 2 above. 

 

We will now use the ‘polyfit()’ function to curve fit the data in Table 1 above.  The x-axis will 

be voltage and the y-axis will be current.  

Task 1: Assign the first column of fix to a variable name ‘x’ and assign the second column to 

variable ‘y’. 

Task 2:  Write code to plot ‘x’ v.s. ‘y’ on a new figure. This is the current-voltage relationship 

(IV curve) of a solar panel. We saw in the previous lab that this curve shifts up and down 
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depending on the illumination. Note: this is a nonlinear relationship. It has a logarithmic 

relationship (rotated 90 degrees clockwise).  

Task 3: In order to fit this log relationship to a polynomial, we must first linearize it. To 

linearize, we will apply ‘exp()’ to the x-axis data. Assign the results of this operation to a 

variable call ‘x_exp’.  Write code to plot ‘x_exp’ v.s. ‘y’. We see that this is almost a straight 

line.  

Task 4: We will now fit this line to an equation of the form J = �K + �. Call ‘polyfit()’ using 

‘x_exp’ and ‘y’. Fit it to a first degree polynomial. Store the output of ‘polyfit()’ to a variable 

call ‘p’. Consult the lecture notes and Matlab “help” on how to use ‘polyfit()’. 

 

The result of the above task is stored in ‘p’. The coefficients m and b are in p(1) and p(2), 

respectively. Follow steps below to compute and plot the linearized fitted curve. 

Since we linearized the x-axis data using the exponential function earlier in Task 3, we need to 

compute J = �K + � using a logarithmically spaced x vector. 

Task 5: Generate a logarithmically-spaced vector from 102 to 10L.1 using ‘logspace()’. Store the 

vector to a variable call ‘x_logspace’. Assign P(1) to variable m, and P(2) to variable b. Now use 

the equation below to compute ‘yt’. 

J� = � ∗ K_��

�	�� + � 

 

Task 6: Write code that plot ‘x_logspace’ v.s. ‘yt’ (in red) on the same figure as ‘x_exp’ v.s. ‘y’ 

(in blue). Note: the third argument of  ‘plot()’ is the color/format string. Example, “plot(x,y,’r’)” 

plots the line in red while “plot(x,y)” simply plots the line in blue by default. 

We will now reverse the effects of linearization. 

Task 7: Obtain a linearly spaced vector from ‘x_logspace’ by using the ‘log()’: 

‘log(x_logspace)’. Assign the result to a variable called ‘x_linspace’. 

Task 8: Write code to plot ‘x_linspace’ v.s. ‘yt’ (in red) on the same figure as ‘x’ v.s. ‘y’ (in 

blue). This completes the curve fitting process. 

We will now compare the current generated by a fixed configuration vs. a tracking configuration. 

Task 9: The variable b is the current generated by the solar panel. What is the value of b for the 

fixed-tilt solar panel configuration? What is the value of b for the single-axis tracking solar panel 

configuration?  
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Question 6 (30 minutes): Solving Nonlinear Equations With Newton’s Method 

The figure below shows the schematic (a circuit diagram) of a photodiode connected to a 

resistive load, R. The equation that describes the circuits is directly beneath the schematic. The 

equations relates 

 

���� = :M��M� ∗ N					 
:M��M� = :��
O� − :M	�P ∗ =�"QR(SQS 5 − 1I 

 

TUVNV			:��
O� = 500 ∗ 10<W���
;   :M	�P = 0.6 ∗ 10<1���
 

                �� = 26 ∗ 10<W����
; 														N = 10 

We see that Vout is a function of Idiode, but Idiode is also a function of Vout. We have two 

equations and two unknowns. So we should be able to solve it, right? But no, that is not the case 

here due to the exponential. Equations in this form (K = �<Y) are called transcendental 

equations. They must be solved either graphically or numerically. In this lab, we will solve this 

problem using three different methods. 

 

Method 1: Finding the solution graphically 

Task 1: Input equations (1) and (2) below into MATLAB as two anonymous functions. Write 

code that plots the two functions on the same figure. By looking at the graph on the screen, 

zoom-in and estimate the point of intersection graphically. Write down the current and voltage 

that corresponds to this point as MATLAB comments. Let x-axis be voltage and y-axis b current.  

Let vout range from 0 to 0.4 at steps of 0.01. 

 :M��M�(����) = 	QR(SZ      equation (1) 

 :M��M�(����) = :��
O� − :M	�P ∗ =�">?+/>/ 5 − 1I  equation (2) 

where R, Ilight, Idark, and Vt are as before. 
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Task 2: Let’s now use MATLAB’s function ‘fzero()’ to check our answer for Task 10. You will 

use the equation below (equation (3)) as the input argument to ‘fzero()’. Equation (3) was 

obtained by first solving for Idiode in equation (1) then equating equations (1) and (2). 

Type ‘help fzero’on how to use ‘fzero()’. Assign the value returned by ‘fzero()’ to a variable 

named ‘actual_root’. 

0 = :��
O� − :M	�P ∗ =�">?+/>/ 5 − 1I − QR(S
Z   equation (3) 

 

Method 2: Approximation through iteration. 

Task 3: In this method, we will successively approximate ‘Vout’ by calculating ‘Idiode’ and 

‘Vout’ in a loop. The more times the loop runs, the more accurate ‘Vout’ becomes. You will first 

make an initial guess for the value of ‘Vout’. Using this guess for ‘Vout’, the loop first calculates 

Idiode, and then recalculates ‘Vout’. The loop now moves onto the next iteration and the whole 

process repeats. (Similar to Newton’s process of estimating the square root of a number in the 

homework problem)  

A diagram depicting this process is below. 

 

First input equations 4 and 5 below as two anonymous functions. 

Now, write a for-loop that iterates through equations (4) and (5) below 10 times.                       

Use Vout=0.35 volts as an initial guess. 

:M��M� = QR(S
Z                        equation (4) 

���� = �� ∗ log	(['&\]S<[^&R^_[^`ab + 1)               equation (5) 

Compare this value to results obtained in Tasks 1 and 2. They should be the same. 
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Method 3: Newton’s Method. 

We will now use Newton’s method to solve for ‘Vout’. In particular, we will find the roots of 

equation (6) below. In this course, we will simply use the results from Newton’s method to help 

us solve numerical problems. The derivation of Newton’s method and its application in 

optimization problems can be found in any numerical analysis and optimization textbooks. 

Newton’s method is simply stated as follows: Given f(x), the roots of f(x) can be approximated 

by iterating through the equation: 

Kcd2 = Kc − �(Kc)
�e(Kc) 

where Kcis the current approximation of the root of f(x). The next approximation Kcd2 is 

adjusted by subtracting the term 
f(Y.)
fg(Y.) from the current approximation. 

Task 4: Now write a function to calculate ‘Vout’ using Newton’s method. Your function should 

take one input parameter and return one output parameter. The function header should look like 

the following: (see below for definitions for ‘NumIteration’ and ‘myOutput’) 

myOutput = myNewton(NumIteration) 

Start by defining the anonymous functions for equations (6) and (7) below.  

- Equation (6) was obtained by solving for ‘Idiode’ in equation (1), then setting that 

expression equal to equation (2). This is the same as equation (3). 

- Equation (7) is the derivative of equation (6) 

�(h���) = :��
O� − :M	�P "�>?+/
>/ − 15 − QR(S

Z       equation (6) 

�e(h���) = ^f(iR(S)
^iR(S = − 2

QS ∗ :M	�P ∗ �
>?+/
>/ − 2

Z   equation (7) 

 

Now, use a for-loop to iterate through the following equation 10 times.  

The parameter, ‘NumIteration’ is the number of times the for-loop runs, and ‘myOutput’ is the 

final value for ‘Vout’.  Initial Condition: Vout(1) = 0. ‘i’ in the equation below is the loop index. 

����(� + 1) = ����(�) − �(����(�)
�e(����(�)) 

The final approximation for ‘Vout’ is in the eleventh entry, Vout(11). What is this value? 
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Now iterate through it 50 times. What is the value of Vout? Note: The final approximation for 

‘Vout’ is now at the 51
st
 entry. 

Now iterate through it 100 times. What is the value of Vout? 

Now iterate through it 1000 times. What is the value of Vout? 

Does it match the results obtained in Task 3? 


