
GE U111 HTT&TL, Lab 6

Back to the Speed of Sound in Air

Introduction to C++ Programming

Contents

1 Preview: Programming & Experiments Goals 2

2 Part I 2
2.1 Part I Homework Assignment .2
2.2 Using Visual C++ .4
2.3 Math Primer: A Straight Line Approximation of Data Pairs. .5
2.4 Speed of Sound Data Analysis Using C .6

3 Part II 6
3.1 Part II Homework Assignment .6
3.2 Speed of Sound Data Analysis Using C, Revisited .7

1

1 Preview: Programming & Experiments Goals

This session comprises two parts.

Part I is used to introduce basicVisual C++. As a starting point, the experimental context repeats the simple framework
of Lab 1. In the programming arena, however, the transition from the interpreted MATLAB to the compiled Visual C++
requires a much more elaborate preparation. Programming concepts and aspects introduced in Part I, include

• Introduction to the Visual C++ environment

• Basic program structure

• Variable (and array) declarations

• Simple input and output commands

• Arithmetic operations

Part II is used to introduce and exercise more advancedVisual C++ tools, to refine the speed of sound computation
program, in Part I. Part II uses the experimental results from Lab 1 and Part I of this Lab. Programming concepts and
aspects introduced in Part II, include

• Logic functions and branching

• while loops in C++

• Input and output files

(Engineering / Science) concepts,components & equipmentincluding

• Same as in Lab 1

Lab Outline. In Part I we shall use experimental data to estimate the speed of sound in air and the correction terms,
as in Lab 1, using very simple programming tools (screen input and output and basic arithmetic operations). In Part II we
shall revisit this same task, having learned how to read and write data files and include loops in programs.

2 Part I

♣ All reading and Pre-Lab assignment from this session on relate to the bookApplications Programming in C++.

♠ As Usual, all pre-lab reports must include copies of -

- Programs you prepare

- Printout of screen output (see instructions in§2.2).

- Output files, where applicable (not this Lab).

- Plots, where applicable.

2.1 Part I Homework Assignment

Assignments for Part I are due in the first session of Part I -

1. Read Chapter 1, inApplications Programming in C++.

2. Read this handout carefully. (§2.2 is essential for your programming tasks.)

3. Do the following in a Pre-Lab assignments:

2

• Exercise 1 and 3, pages 34-35; Exercises 1 and 2, page 46; Exercise 1,2,3 and 4, page 49

• Do the Pre-Lab Task 1, in this handout.

The assignments above should be included in the Pre-Lab report for Part I.

4. The Pre-Lab assignments for Part II are specified in§3, and will be submitted separately, in the first session of Part
II.

5. Only one Post-Lab Report is due, combining Parts I and II. It is due a week after the completion of Part II.

3

2.2 Using Visual C++

Writing and running a C++ program requires much more than you got used to in MATLAB. For orderly run, each pro-
gram needs associated with a folder containing, the program itself, input and output data files, and several automatically
generated other files, contained in aproject. Following is an outline of the steps you have to follow in order to create a
new program:

1. Open the Visual C++ Window.

2. Under theFile menu, selectnew, thenprojects ; a dialog box will open -

• Selectwin32 console application

• In theLocation window, select the location of your new project. (In the HTT&TL use the a: directory.)

• In theProject name type a name of your choice.

3. Under theFile menu, selectnew, thenFiles ;

• c++ source file

• Mark theAdd to project box, and leave the created project name name showing in the window

• Leave the default location. (It will be in the sub-directoryDebug of the directory created for your new
project.)

• In theProject name type a name of your choice. Typically it will be the same as the project name. You
do not need to include a suffix.

4. Type your program into the file (the top-right window.)

5. Compile your program, using one of three options-

• Above the program / files window are six symbol icons (the right-most being a hand). Click on the left-most
icon to compile.

• Selectcompile <file name > in theBuild menu.

• Hit the control and F7 keys together.

The response and error messages are provided in the bottom window.

6. Once the program is debugged and compiles successfully (no errors or warnings),Build / Link your program,
using one of three options-

• Click on the second from left icon above the files window.

• SelectBuild <file name > or (better yet)Rebuild all in theBuild menu.

• Hit the F7 key.

Again, the response and error messages are provided in the bottom window.

7. Once the program is debugged, compiled and linked successfully (no errors or warnings),Execute your program,
using one of three options-

• Click on the fourth from left icon above the files window (the! icon).

• SelectExecute <file name > in theBuild menu.

• Hit the control and F5 keys together.

8. Screen input and output in Visual C++ are performed in a DOS style black background window. This window does
not have a menu bar. To copy the contents of a portion of that window bring the cursor to the desired beginning
point, press the left mouse bottom, drag and highlight the area then release the left right mouse bottom and click
the right mouse bottom. Now open a text editor (e.g., notebook) and select thepaste menu or presscontrol v .
Notice: The order of the mouse bottoms use is essential: a click in the wrong order may close the display window,
or display a very long history of past runs.

4

As you read Chapter 1 you will notice the basic structure of a C / C++ program:

• Calling header files, using the#include <... > format.

• Other preliminary global declarations (e.g.,using namespace std).

• Program and output declaration (e.g.,void main()).

• The program itself, between curled brackets (i.e.,{ and}), where each command is followed by a semicolon.

2.3 Math Primer: A Straight Line Approximation of Data Pairs.

Since functions such as MATLAB’spolyfit andpolyval are not available in C, we need to create them explicitly.
This section provides the details.

Problem Statement.

Given: Pairs of points(xi, yi), i = 1, 2, . . . , n.

Postulation: The given pairs are roughly matched by a linear relation

y = a x + b (1)

Task: Finda andb so that theroot mean squares (RMS)error

ε =

√√√√ n∑
i=1

(yi − (a xi + b))2 (2)

will be minimal. A good measure of the quality of the estimation is the normalized error:

ε0 =
ε√∑n
i=1 y

2
i

=

√∑n
i=1 (yi − (a xi + b))2∑n

i=1 y
2
i

(3)

Problem Solution. This and similar RMS optimization problems are commonplace in such fields as signal processing,
communications, medical imaging, radar, control, and stochastic estimation. The theory behind the solution goes beyond
the scope of this class, and we shall be content here with the explicit formulae of the solution Procedure.

1. Create two 2×1 vectorsMandN, as follows -

M(1) =
n∑

i=1

xi, M(2) =
n∑

i=1

x2i, N(1) =
n∑

i=1

x(i)y(i), N(2) =
n∑

i=1

y(i) (4)

2. The optimal values ofa andb are

a =
n N(1)− M(1) N(2)
n M(2)− M(1)2

, b =
M(2) N(2)− M(1) N(1)

n M(2)− M(1)2
(5)

Clearly, in order to code this algorithm efficiently we need the use of both loops - to implement the sum - and logical
branching (if ...) - to avoid division by zero in casen M(2) = M(1)2. Also, if we want to be able to retrieve data from a
file and save the results in a file (e.g., in order to plot the data vs. the approximation), a mechanism to read and write data
files is needed. These tools will be introduced in Part II. At this point we shall be content with using only basic arithmetic
operations, will trust / hope that zero division will not occur (which is supported by theory, if your measurement distances
are amply spaced), and use “manual” data entry and screen output, wit thecin andcout commands.

5

2.4 Speed of Sound Data Analysis Using C

Pre-Lab Task 1. Write a C++ program namedline approx.cpp that executes the following operations:

1. The program calls the header filesiostream andcmath .

2. Here and throughout, use the commandusing namespace std .

3. The program itself has no output; i.e., the program starts withvoid main() .

4. Definedouble arrays nameddistance anddelay , each of size5.

5. Use thecout command to display the statementPlease enter values of 5 measured distances
between the two transducers and move the curser to a new line.

6. Use thecin command to enter 5 values fordistance[k], k=1,...,5 .

7. Use thecout command to display the statementPlease enter corresponding values of 5 measured
sound wave travel times between the two transducers and move the curser to a new line.

8. Use thecin command to enter 5 values fordelay[k], k=1,...,5 .

9. Use basic arithmetic operations (i.e., +, -, * and /) to compute the optimal linear approximation of the plot of
distance as a function ofdelay . That is, code the algorithm of§2.3 withn=5 , x=delay andy=distance .

10. Assign the value of the optimal “a” to a float variable namedsos and the value of the optimal “b” to a float variable
nameddisplacement .

11. Compute the normalized error from Eq. (3) to a float variable namednerror .

12. Use thecout command to display the statementThe estimated speed of sound is <value of
sos >, move to a new line and display the statementthe value of the linear displacement is
<value of displacement >, move to a new line and display the statementthe relative error measure
in this estimation is <value of nerror >. and finally, again, move the cursor to a new line.

Include the program in your Pre-Lab report. Try to debug the program and run it with data from Lab 1. If successful, for
extra credit include in your report a printout of the display window from a successful run. Bring a copy of the program on
a diskette to the lab.
Lab Task Experiment 1. Use the instructions from Lab 1 to obtain an additional 5 data pairs at nearly equally spaced
distancesthat werenot used in your Lab 1 experiment. If needed, use instructor and TA help to debug your program
line approx.cpp . Run the debugged program using the new experimental data. Include in your report a printout of
the display window from a successful run.

3 Part II

3.1 Part II Homework Assignment

1. Review Chapter 1, Sec. 1.9 and read Chapter 2, Sections 2.1, 2.3, 2.5 and 2.8 inApplications Programming in C++.

2. Read this handout carefully.

3. Do the following in a Pre-Lab assignments:

• Exercise 1, 2, 4, 7 pages 78, 79; Exercise 1, 4, page 86; Exercise 2, pages 95.

• Do Pre-Lab Task 2 in this handout.

4. Following completion of the Lab, write a Post-Lab report, summarizing the experiments and your findings of both
Parts I and II.

6

3.2 Speed of Sound Data Analysis Using C, Revisited

Pre-Lab Task 2. The programline approx.cpp had several disadvantages:

- The program requires manual input and output, instead of a convenient use of data files. In particular, the program
output was not readily portable for use with other software, such as the use of MATLAB for plotting.

- The long summation (
∑5

i=1) required a term by term arithmetic.

- There was no prevention of division by zero.

- The number of data points (5) was pre-determined.

In this task you have to write an improved C++ program namedbetter line approx.cpp , building on the original
line approx.cpp , and improving on it, as follows.

1. The program will read data pairs, one pair at a time, from a data file.

2. The number of data pairs is allowed to vary between 5 and 100. If less than 5 data pairs will be provided, the
program will terminate and issue an error statement. If more than 100 data pairs were provided, only the first 100
will be used.

3. The program should stop and issue an error message if either of the denominators in Eqs. (5) and (3) is too small.
(Appropriate thresholds can be set at magnitudes lower by a factor of 100 smaller than the values in the computations
you made in Part I.)

4. If the threshold and data size conditions are satisfied, the program should continue. The program will then create a
MATLAB script file as an output. The M-file will be such that when run in a MATLAB window, it will create the
plot created in Lab 1, comparing the linear regression with the data points.

5. In addition, the program should provide for a screen display of the estimated speed of sound and the normalized
estimation error.

The following guidelines will help you to create the program:

1. Create a text input file namedmydata.txt . The file will include a list of experimental data pairs, typed in suc-
cession, in the form:<delay> <distance> <newline>. For example:

8.2669352e-005 2.0000000e-002
1.5459763e-004 4.0000000e-002
1.7829775e-004 6.0000000e-002
2.6604091e-004 8.0000000e-002
2.6766557e-004 1.0000000e-001
3.9174423e-004 1.2000000e-001
3.9327882e-004 1.4000000e-001
4.5055605e-004 1.6000000e-001
5.5980265e-004 1.8000000e-001
6.0742916e-004 2.0000000e-001

2. The program calls the header filesfstream , iostream , andcmath . The addition offstream enables the use
of input and output files, using theifstream andofstream commands.

3. The program defines theifstream variableinp and opens the input filemydata.txt . This is done with the
commands

ifstream inp;
inp.open("mydata.txt");

7

4. The program defines theofstream variableoutput and opens the output filesoscomp.m . (That is, the output
file will be a MATLAB script file that will be run to create desired plots.) This is done with the commands

ofstream output;
output.open("soscop.m");

5. The program itself has no output; i.e., the program starts withvoid main() .

6. Declaredouble arrays of length 100time[100] anddistance[100] . These variables will be used to read
the respective values of data pairs from the data file.

7. Declare an integer variablecount , initiated with the value 0. It will be used to count how many input data pairs
were read.

8. Declaredouble variables namedM1, M2, N1, N2 andN3, each initiated with the value 0. The variablesM1,
M2, N1 andN2 will be used to iteratively compute the respective sums, as defined in Eq. (4). The variableN3
will be used to iteratively compute the value of the sumN3 =

∑n
k=0 y

2
k, as in the numerator of Eq. (3), where

yk = dist[k].

9. Declaredouble variables namedsos , displacement andnerror .

10. When finally created, the output filesoscop.m should define a two-column MATLAB array namedmydata ,
whose first column is the vector of time delays, and the second column is the vector of corresponding distances.
These columns will be used in the required plot. Using the numerical example above, the file should eventually
include the text

mydata = [
8.2669352e− 005 2.0000000e− 002
1.5459763e− 004 4.0000000e− 002
1.7829775e− 004 6.0000000e− 002
2.6604091e− 004 8.0000000e− 002
2.6766557e− 004 1.0000000e− 001
3.9174423e− 004 1.2000000e− 001
3.9327882e− 004 1.4000000e− 001
4.5055605e− 004 1.6000000e− 001
5.5980265e− 004 1.8000000e− 001
6.0742916e− 004 2.0000000e− 001
];

(6)

(Recall that moving to a new line, in a MATLAB definition of an array, is equivalent to entering a semicolon, to
instruct starting a new line.) The idea is to use the C++ program to add data values of each pair, as it is read, into
the text of the M-file. This will be done below. However, the program must first print into the file the text of the
first line and the instruction to move to a new line -

output <<"mydata=[\n";

11. Create awhile loop that performs the following steps -

(a) Thewhile condition should combine two basic requirements:

i. The number of data pairs already read is less than 100.

ii. There is an additional, unread data pair in the data file. In that case, the first available data entry should
be read intotime[count] and the second available data entry be read intodist[count] .

8

This is done by the command -

while ((inp>>time[count])&&(inp>>dist[count])&&(count<100))

(b) Write into the output M-file the values oftime[count]) anddist[count] , separated by a space, and
move to a new line-

output <<time[k] <<" " <<dist[k] <<" \n";

(c) time[count] will be added to the value ofM1.

(d) time[count]*time[count] will be added to the value ofM2.

(e) time[count]*dist[count] will be added to the value ofN1.

(f) dist[count] will be added to the value ofN2.

(g) dist[count]*dist[count] will be added to the value ofN3.

(h) Finally, having read yet another data pair, the value ofcount has to be increased by one.

By the time this loop terminates, all data pairs (up to 100) were read, the value ofcount is the number of data pairs
used, and the values ofM1, M2, N1 andN2 are as defined in Eq. (4), withn=count, x=time andy=dist .
Thus, Eq. (5) can be used to compute the speed of sound and the displacement correction. Also, the value ofN3 is
the numerator in the computation of the relative error in Eq. (3). Finally, all the entries in the definition of then×2
arraymydata in the output M-filesoscomp.m have been written. All that is missing in the definition ofmydata
is the closing line in (6).

12. Following the end of thewhile loop, there should thus be the command

output <<"]; \n";

13. A logical branching should now take the program in one of two directions:

(a) If either N3 (the denominator in (3)) or the absolute value of the denominator in (5) is smaller than the
respective tolerances that you selected, or if the number of available data pairs is smaller than 5, then

i. A screen error message is issued (usingcout).
ii. The values of bothsos anddisplacement are set to the non-physical zero.

iii. The value of the relative error,nerror , is set to one (= 100% error).

(b) Else,

i. A screen message of jubilation is issued (usingcout).
ii. The values ofsos anddisplacement are computed according to Eq. (5).

iii. The value ofnerror is computed by Eq. (3). This requires running a loop ofcount steps, to compute
the numerator, dividing byN3 and taking the square root, with the functionsqrt .

14. Once the values ofsos , displacement andnerror have been determined (either way), the program has to
include in the output M-file, the following text

% The number of data pairs used is <value of count >.

% The estimated speed of sound is <value of sos >.

% The estimated displacement is <value of displacement >.

% The normalized estimation error is <value of nerror >.

9

15. If the value ofnerror is one or more, it should add to the output file the following text

disp(’The Experimental Data Are Faulty’)

16. If the value ofnerror is less than one, it should add to the output file the following text

est=[<value of sos >, <value of displacement >];
count= <value of count >;
nerror= <value of nerror >;
plot(mydata(:,1),mydata(:,2),’*’,mydata(:,1),polyval(est,mydata(:,1))
xlabel(’travel time’)
ylable(’distance’)
title(’A Linear Regression of Distance vs. Travel Time Data’)

17. When all tasks are complete, both the input and the output files are closed.

Include the program in your Pre-Lab report.

Lab Task Experiment 2. Debug the programbetter line approx.cpp and run it with 15 data points from Lab
1 and from Part I of this Lab 6. Include in your report a printout of the display window from a successful run. Run
the output file in MATLAB. Include in your report a printout of the output MATLAB filesoscomp.m , the MATLAB
command window portion from a successful run and the output plot. Save a copy of the program on a diskette.

10

