
MEM380: Applied Autonomous Robots

Wk 2 Assignment

Due: Monday, Oct. 15, 11:59pm EST

1 Objective

The objective of this assignment is to implement the A* algorithm. You are given the following
Matlab files:

• addToStack.m: Usage outStack = addToStack(newElement, originalStack) where newElement
can be an array or structure and orginialStack is an L × 1 array of elements of type
newElement. This function will attach newElement to the top of the stack given by originalStack.

• popOffStack.m: Usage [outElement, newStack] = popOffStack(originalStack) where outElement
is the first element in originalStack and newStack is the originalStack with the first element
removed.

• AstarTestmap.txt: A sample map. To load this into Matlab use map = load(’testmap.txt’).
This results in an N×M matrix such that every element represents a cell in the environment - a
0 denotes empty space, a 1 denotes an obstacle. This is the occupancy grid for your environment.

• AStar user.m: Usage path = AStar user(start, qgoal,map) where path gives you the path
from start and qgoal and map is an occupancy grid, i.e, a matrix representing a map of the
workspace.

Requirements:You MUST use Matlab to complete this assignment.

2 Background

The problem of planning a path given a start and a goal position is called the path planning
problem. We often encounter such problems in the area of mobile robotics where the goal is to give
the robot the ability to determine how it should navigate from its current location to some desired
goal position. As such, we must consider the robot’s start and goal positions as well as the geometry
of the environment, i.e. the location of the obstacles, the size of the obstacles, and the such. (This
is also a common problem in video game design where the programmer must be able to compute the
trajectories that the numerous characters follow in a game.)

There are numerous existing methods that can be employed to solve the path planning problem.
A common approach is to tesselate the workspace into cells. Once the workspace has been properly
discretized, one can represent the layout of the workspace using what is called an occupancy grid.
An occupancy grid is simply a data structure used to encode the layout of the workspace. One can
interpret the occupancy grid as simply a map of the environment where free space is represented by
clear cells and occupied space, i.e. space where obstacles reside, is represented by solid cells. Figure
1(a) shows an occupancy grid for a workspace that has been tesselated into cells of varied size and
shapes while Figure 1(b) shows an occupancy grid obtained using a fix grid decomposition of the
workspace. From these two examples, we see that it is possible to represent any given occupancy
grid as arrays of 0s and 1s where 0s denote free space and 1s denote occupied space. Furthermore,

1



(a) (b)

Figure 1: (a) General tesselation of an environment. Such methods will result in an occupancy grid with cells of varying
sizes and shapes. (b) A grid decomposition of an environment. These results in square cells of the same dimensions.

by representing our workspace using an occupancy grid, we can easily find the shortest path between
any two free cells in the environment by determining the shortest sequence of free cells that connects
the two cells.

To do this, we pose the path planning problem as a graph search problem. Thus, for each empty
cell in our occupancy grid we represent it as a node in a graph. An edge exist between two nodes if
the cells they represent are adjacent and you can traverse from one cell to another. Once we have
performed this transformation, our path planning problem is now simply a graph search problem.
There are numerous graph search algorithms, breadth–first search, depth–first search, Dijkstra’s, and
numerous others. A* (pronounced as A star) can be seen as a variation of the ones I just mentioned.
What distinguishes A* from breadth–first and depth–first search algorithms is that it employs a
heuristic function, h(x). The heuristic function provides an approximation for the cost of the best
route that goes through each node. And it employs this heuristic estimate when determining which
node to visit next in its search process. As such, A* is an example of a best–first search algorithm [5].
Furthermore, if we choose h(x) = 0, we can show that Dijkstra’s algorithm is simply a special case
of A*. Lastly, A* is both complete and optimal. This means that A* will always find a path if a
path exists and report failure if a path does not exist and the path that A* returns will be optimal
in terms of the heuristic function.

2.1 Algorithm Structure

In this section we take a closer look at the mechanics and the structure of the A* algorithm. Let’s
take the example shown in Figure 2. The objective is to find the shortest path between the start and
goal. In other words, what is the minimum number of squares we need to tranverse in order to reach
goal from start?

Starting the Search

Given our occupancy grid, we begin our search by starting at the start position and check its adjacent
cells, searching outward towards the goal. Thus, we do the following:

(a) Begin at start and add it to an open list of cells to be considered. The open list contains the
cells that may fall on the optimal path we want. In other words, the open list contains the cells
we need to take a closer look at in our search process. As we expand outward, this open list
will grow.

2



(b) Look at all the reachable cells, i.e. cells that do not contain obstacles, adjacent to start and add
them to the open list. For each of these cells, save start as its parent cell, i.e. the cell you were
at before reaching the adjacent cell. Saving this information correctly is extremely important
since this is how we will trace our path once we have reached the goal, i.e. we will get our
optimal path by tracing backwards from the goal to the start position.

(c) Drop the start the open list, and add it to a closed/visited list of cells.

Next, we choose one of the adjacent cells that we have added to the open list and more or less repeat
the above process. To determine which cell to choose, we look at the cost associated with each cell.

2.1.1 Path Scoring

This is where our heuristic function comes in. In order to figure out which of the cells in our open
list to “visit” next, consider the following equation:

f(x) = g(x) + h(x) (1)

where x denotes the current cell, g(x) gives the cost to move from the start position , start, to the
current cell x, and h(x) is the heuristic function which gives an estimate of the cost to move from
the current cell x to the goal position, goal. In general, h(x) can be seen as an educated guess of
the cost to move from the current cell to the goal position. In the path planning community, h(x) is
often chosen to be the Euclidean distance between the current cell and the goal cell, i.e. the straight
line distance between a robot’s current position and the goal position disregarding all obstacles in
the environment. As such h(x) is generally chosen as a lower bound on the actual cost. Thus, given
g(x) and h(x), the function f(x) is a conservative estimate of the cost of the shortest path from start
to goal through the current cell x. Our path is then generated by repeatedly going through our open
list and choosing the cell with the lowest cost f(x).

2.1.2 Completing the Search

To complete our search, at every iteration, we simply choose the cell from our open list with the
lowest cost f(x) and do the following on that cell:

(a) Drop it from the open list and move it to the closed list.

(b) Check all the adjacent, traversible cells and add those cells to the open list if they are not
already on the list. Specify the current cell as the parent of the cells you add to the open list.

(c) If an adjacent cell is already on the open list, check to see if your current path to that cell is a
better one. In other words, check to see if the value of g(x) for the cell is lower if we use the
current cell to get there. If not, dont do anything, otherwise, change the parent of the adjacent
cell to the current cell. Remember to recalculate both the f(x) and g(x) scores of that cell.

In summary:

(a) Add start to the open list.

(b) Repeat the following:

(a) Look for the lowest cost, f(x), cell on the open list and let this cell be the current cell x.

(b) Move x to the closed list.

3



(a) (b)

Figure 2: An example.

(c) For each of the 8 adjacent cells of x, if the adjacent cell is occupied, ignore it, otherwise
do the following:

• Add it to the open list if it isn’t on the list. Specify x as the parent cell and compute
f(x), g(x), and h(x).

• If it is already on the open list, check to see if the current path to the cell is better by
looking at the current value of g(x) and the previously stored value of g(x) associated
with the cell. If the current g(x) is lower, change the parent of the cell to x and
recalculate f(x), g(x), and h(x). If you are keeping your open list sorted by f(x), you
may need to resort the list to account for the change.

(c) Stop when you: 1) Add goal to the closed list, in which case the path has been found, or 2)
fail to find goal, and the open list is empty. This occurs when no path exists between start and
goal.

To print out the path, work backwards from the goal position. Look at the parent of goal, print
this out. Then look at the parent of the parent of goal, print this out. And so on and so forth until
you reach start. This is your path. The A* algorithm is also summarized in pseudo-code form in
Algorithm 1. In our example the shortest path length is 9 and the path is shown in Figure 2(b).

This description of the A* algorithm and its implementation is a summary of the one provided
by Patrick Lester in [3]. Look at this website for more implementation details.

3 Task 1: (20 points)

Assume a point robot. Write a function path = AStar user(start, qgoal, map) where start

and qgoal are 2 × 1 vectors containing the start and goal coordinates for the robot, map is your
N ×M matrix which encodes the map of the environment, and path is a P × 2 vector of coordinates
that encodes the shortest path found by the your A* function. Since your map is stored as a matrix,
the coordinates can simply be (i, j) where i denotes the ith row of the matrix and j denotes the jth

column of the matrix.

Hints:Use (1, 3) and (10, 7) as your sample start and goal positions. To maintain a sorted list in
Matlab:

(a) Add the element to your array;

(b) Use Matlab’s sort() command.

4



Algorithm 1 A* algorithm [5]

function A*(start,goal)
var closed = the empty set
var q = make queue(path(start))
while q is not empty do

var p = remove first(q)
var x = the last node of p
if x in closed then

continue
end if
if x = goal then

return p
end if
add x to closed
for y in successors(x) do

enqueue(q, p, y)
end for
return failure

end while

4 Task 2: (5 points)

Modify your A* code so that you it now find Dijkstra shortest paths. Rename this function to
be path = Dijkstra user(start, qgoal, map).

5 Extra Credit 1: (5 points)

Right a function that uses a Bread First Search to find shortest paths. Name this function to be
path = bfs user(start, qgoal, map).

6 Extra Credit 2: (5 points)

Right a function that uses a Depth First Search to find shortest paths. Name this function to be
path = bfs user(start, qgoal, map).

7 What to Submit

Put all your m-files into a single zip compressed file. Make sure your code is well commented!
Make sure to include ALL helper functions you were provided with and have written. In your
submission email, please provide a list of instructions on how to run your code. To start, provide a
list of all the m-files included in your zipped file and explain how to use them. Make sure you say
which of your m-files are scripts and which of those are functions. Next, provide a set of instructions
on how to call your m-files so we obtain the solution. You may include any map files you used to test
your code on in your zipped file.

References

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston, 2005.

[2] A* Algorithm Tutorial. http://www.geocities.com/jheyesjones/astar.html

5



[3] Patrick Lester. A* Pathfinding for Beginners. http://www.policyalmanac.org/games/

aStarTutorial.htm

[4] Maxim Likhachev, Geoff Gordon and Sebastian Thrun, ”ARA*: Anytime A* with Provable
Bounds on Sub-Optimality,” Advances in Neural Information Processing Systems 16 (NIPS), MIT
Press, Cambridge, MA, 2004.

[5] A* Search Algorithm. http://en.wikipedia.org/wiki/A*_search_algorithm

6


