MEM380: Applied Autonomous Robots 1

Wk 5 Assignment

Due: Monday, Oct. 29, 11:59pm EST

Objective:The objective of this assignment is three-fold: 1) investigate the use of inertial sensors
(accelerometers and a rate gyroscope) for dead reckoning in a differential drive mobile robot; 2)
implement a least-squares line fit solution using actual laser data; and 3) implement a least-squares
circle fit algorithm using actual laser data.

Dead Reckoning via an Inertial Navigation System (INS)

Assumptions:In all of the INS experiments, we will assume that

e Our inertial measurement unit (IMU) consists of x and y-axis accelerometers, and a z-axis rate
gyroscope.

e The IMU frame is coincident with the robot frame.
e Our kinematic model for a differential drive robot still applies.

1. Inertial Navigation (10 pts)Complete the function deadReckoni_user (inputFile) where
inputfile is the name of a file consisting of robot accelerations in the Xpr and Yg directions (in
m/s?), i.e. the robot centered coordinate frame, as well as angular velocity 6. As usual, replace user
with your Drexel login.

e Note that inputfile should be entered as ‘fileName’ where fileName denotes the name of
the file including the extension.

e The function provided to you does the following:

(a) Take a mouse click input from the user and create a robot at that position with 6§ = 0,
Lines 8-10 of deadReckon1_user().

(b) Read in the inertial sensor measurements (sampled at 50Hz) from a text file, Lines 12-18
taskl_user().

(c) Use the accelerations to update the global pose of the robot using the makeRobot and
moveRobot functions. Take a look at sample.m file for an example using makeRobot and
moveRobot functions. Your portion of the code should be added after Line 36
and before Line 43 of the downloaded file.

(d) We will assume that the robot is starting from a stopped position.

Some helpful MATLAB functions include ginput and help. If you don’t know what ginput
does, type help ginput at the MATLAB command prompt.

e You can use the sample input file input_wk4. txt to test the functionality of your program. If it
is working correctly, the robot should move at constant speed in a circle going counterclockwise
(see Figure 1). In the coordinate frame attached to the robot, i.e. the robot coordinate frame,
the x-axis is always pointing forward.



VAR

T

Figure 1: Schematic for closed-loop motion control.

e You should also test your program with other input files of your own creation to ensure proper
functionality of your program.

Tips:My suggested route for doing this task is as follows:

(a) Express the velocity of the robot in world coordinates;

(b) Take the derivative in the world coordinates to find the vehicle accelerations in the world frame;
(c) Rotate these accelerations into the body frame using R? = R(—theta);

(

)
)

d) Use the equations that were found in the previous step to match the sensor readings; and
)

(e) Numerically integrate on those value to find the trajectory of the vehicle.

Keep in mind that in the coordinate frame attached to the robot, the x-axis is always pointing
forward, and the y-axis is always pointing sideways. If one naively integrates the velocity values in
the input file

V(i + 1) = v (3) + ax(4) * dt,
vy (i 4+ 1) = vy () + ay (i) * dt.

The non-negative a, terms would produce, after a time(i) step, a velocity in the body y-axis
direction. This violates what we know about the differential drive robot. It can NOT move along its
own y-axis/sideways. That means there must be another source of y-axis acceleration in the system.
By following the steps above you should be able to discover what that source is. For intuition - think
about how a car can create a sideways acceleration and not move sideways.

2. Dead Reckoning with Bias (10 pts)In this exercise, we will test the effects of bias in inertial
measurements on dead reckoning performance.

a Generate an input file which reflects the robot moving from standstill to 2 m/s in 5 seconds
under constant x-acceleration, and then travels a total distance of 50 meters. Run this trial
using your deadReckonl user function and create a figure. You should name your script
deadReckon2a user.m where user is your Drexel login.



b Repeat the above trial by introducing bias to the measurements obtained in 2(a) above to
reflect:

i Bias to the x accelerometer of 0.005g only
ii Bias to the y accelerometer of 0.005g only

iii Bias to the z accelerometer of 0.005¢g and bias to the angular velocity of 0.01 rad/s

Write a script, deadReckon2b_user.m to generate a figure from each trial. Use disp() to
output your discussion of the effects of each component, to include error magnitude, rate of
error growth, etc.

3. Least-squares line fit (10 pts)Read over the notes provided on the course website to Prof.
Simoncelli’s notes on least-squares optimization and SVD. Complete the m-file 1sLineFit_user.m.
The code provided to you does the following:

e Reads in the laser data provided in lineData.txt and stores it into a matrix, Lines 5-8. The
data is provided in polar coordinates where the first column is the angle in rad and the second
column is the measured distance in mm.

e Converts the data provided from polar coordinates into Cartesian coordinates, Lines 10-12.
e Plots the data points, Lines 14-17.

e Divides the data points into K segments or clusters based on the distance between each con-
secutive pair of points, Lines 19-39. If you look at the plot generated in Lines 14-17, you see
that this clustering should segment out portions of the data that seem to be part of the same
line.

e Fits lines to each cluster, Lines 46-50. Note, your portion of the code will be added
here. Keep in mind that you may need to add more lines of code than provided to you.

e Draws the fitted lines to each cluster.

As usual, replace user with your Drexel login and submit your code. Look at the final plot generated.
Do you notice anything interesting?

Extra Credit (5 pts)Can you come up with a strategy to improve the current line fitting procedure?
Submit your extra credit code as a separate file named lsLineFit_ec_user.m. You can use your
completed 1sLineFit user.m as the starting point.

4. Least-squares circle fit (10 pts)Read over the notes provided on the course website to the
Developmental Testbed Center’s (DTC) notes on least-squares fit to a circle. Complete the m-file
1sCircleFit_user.m. The function provided is very similar to the one presented in Problem 3. Once
again, the code provided does the following:

e Reads in the laser data provided in circData.txt and stores it into a matrix, Lines 5-8. The
data is provided in polar coordinates where the first column is the angle in rad and the second
column is the measured distance in mm.

e Converts the data provided from polar coordinates into Cartesian coordinates, Lines 10-12.

e Plots the data points, Lines 14-17.



e Divides the data points into K segments or clusters based on the distance between each con-
secutive pair of points, Lines 19-39. If you look at the plot generated in Lines 14-17, you see
that this clustering should segment out portions of the data that seem to be part of the same
line.

e Fits lines to each cluster, Lines 46-50. Note, your portion of the code will be added
here. Keep in mind that you may need to add more lines of code than provided to you.

e Draws the fitted circles to each cluster.

As usual, replace user with your Drexel login and submit your code. Look at the final plot generated.
Do you notice anything interesting?

Extra Credit (5 pts)Can you come up with a strategy to improve the fitting procedure? Submit
your extra credit code as a separate file named 1sCircleFit_ec_user.m. You can use your completed
lsLine user.m and 1sCircleFit_user.m as the starting point.



