﻿

Accelerating the pace of engineering and science

# dst, idst

Discrete sine transform

y = dst(x)
y = dst(x,n)
x = idst(y)
x = idst(y,n)

## Description

The dst function implements the following equation:

$y\left(k\right)=\sum _{n=1}^{N}x\left(n\right)\mathrm{sin}\left(\pi \frac{kn}{N+1}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}k=1,...,N.$

y = dst(x) computes the discrete sine transform of the columns of x. For best performance speed, the number of rows in x should be 2m – 1, for some integer m.

y = dst(x,n) pads or truncates the vector x to length n before transforming.

If x is a matrix, the dst operation is applied to each column.

The idst function implements the following equation:

x = idst(y) calculates the inverse discrete sine transform of the columns of y. For best performance speed, the number of rows in y should be 2m – 1, for some integer m.

x = idst(y,n) pads or truncates the vector y to length n before transforming.

If y is a matrix, the idst operation is applied to each column.