
O rdinary differential equations are like kids on a

family vacation; they’re always asking when it’s

time to stop. When does the bouncing Mars

P a t h finder hit the surface? When is a car’s engine speed close

enough to its transmission speed for the clutch to engage?

When does the price for an options contract hit the strike price?

The new ordinary differential equation solvers available in

MATLAB 5 and Simulink 2 provide the features necessary to

answer these questions. There are five new solvers. Each of

them solves a system of ODEs of the form

y’ = f (t,y)

where f is a vector-valued function of the independent variable,

t, and the vector of dependent variables, y. The initial values, y0,

are specified at t0. The solvers compute a sequence of points t1,

t2, …, and corresponding numerical solutions, y1, y2, … . The

new solvers also include interpolation formulas that define a

smooth numerical solution, y(t), for all values of t.

A key question is: When should we stop? With the old

solvers you had to specify a final value tf. This is still possible,

but it is sometimes more useful to specify a second function,

g(t,y), and then seek a stopping value ts so that

g(ts) = g(ts,y(ts)) = 0 .

The stopping function g could be the distance from the

P a t h finder to the surface of Mars, the difference between the

speeds of the engine and the transmission, or the difference

between the option and strike prices. The zeros of g(t) are

known as zero crossings or event locations. JPL’s Fred Krogh,

one of the first people to include such

a feature in general purpose ODE

software, calls them g - s t o p s.

The MA T L A B function f z e r o fin d s

a zero of any function of a scalar

variable. It has been in MA T L A B f o r

years and should be perfect for this

job. But we didn’t use it. Here’s why.

The first graph shows the situation

when a solver is near a stopping point.

We have found an interval, a < t < b,

where the function g(t) changes sign. Our job is to find a point

ts in this interval where the function value is close to zero.

The second graph shows a simple linear interpolation step.

The resulting point c is our first approximation to ts. This

works fine. What’s next?

If we confine ourselves to linear interpolation using

function values of opposite sign, the result is the method of

false position or “regular falsi.” The third graph shows that for

a convex function, one “old” value, a in our example, is used

over and over again. The resulting convergence is so slow that

the method is not useful.

The secant method has a faster convergence rate than false

position. It involves linear interpolation using the two most

recently computed function values, even when they have the

same sign. It’s very effective when you’re close to the zero. But

the fourth graph shows that the extrapolated zero can be far

outside the interval.

1 6 S i m u l i n k 2 S p e c i a l E d i t i o n M A T L A B N e w s & N o t e s

Are we there yet ?

by Cleve Moler

C l e v e ’ s C o r n e r

Zero crossing and event handling for differential equations

Inverse quadratic interpolation, IQI, is another rapidly

convergent algorithm. It involves fitting a “sideways” parabola

through three function values and then evaluating that

parabola at zero to get a fourth point. The fifth graph shows

that this point can also be outside the interval. When we get

closer to the solution, so that the curvature doesn’t vary so

much, this method can also be very effective.

The ultimate in reliability is interval bisection, shown in

the sixth graph. Only the signs of the function values are used.

With our example, the function changes sign between a and c,

so the next iterate is taken to be the midpoint of this interval.

This algorithm is guaranteed to find a tiny interval on which

the function changes sign. But, if our convergence criterion is

that the uncertainty in the computed ts should be less than the

IEEE floating-point roundoff error in the original a and b,

then bisection will take 52 steps to finish. That’s too many.

MA T L A B’s f z e r o combines secant, IQI and bisection. It

uses secant or IQI if they are within the interval and bisection

if they aren’t. It combines the reliability of bisection with the

ultimate speed of the other two algorithms. Originally called

z e r o i n or Dekker’s algorithm, it has a long and interesting

history, dating back to the early 1960’s, with contributions by

Dekker, van Wijngaarden, Zonneveld, Dijkstra and Wilkinson.

Important refinements were made in 1973 by Richard Brent. It

has been featured in numerical methods textbooks by

Shampine and Allen, Forsythe, Malcolm and Moler, and

Kahaner, Moler and Nash. It’s a terrific algorithm–but only for

scalar-valued functions of a scalar variable.

In our differential equations context, we may have several

different stopping criteria. The function g(t) may be a vector-

valued function. Extending the logic of fzero to the vector

case is impractical because different components of g may

take different paths through the algorithm. In other words,

fzero can’t be vectorized.

So Larry Shampine, our advisor on ODE solvers,

resurrected an even older algorithm, probably invented in the

1950’s at the University of Illinois, in one of the world’s first

computer centers. The Illinois algorithm is discussed in a

survey paper by P. Jarratt in a 1970 book, Numerical Methods

for Nonlinear Algebraic Equations, edited by Philip

Rabinowitz. The basic idea is illustrated by our final graph.

Instead of bisection in t, it uses a kind of bisection on the

values of g. When an old point, like a, is reused in a linear

interpolation step, its function value is cut in half. The Illinois

algorithm shares the reliability that the bisection algorithm

obtains by staying in an ever shrinking interval, but avoids the

slow convergence that plagues the method of false position.

And it can be vectorized. ■

M A T L A B N e w s & N o t e s S i m u l i n k 2 S p e c i a l E d i t i o n 1 7

Cleve Moler is chair-

man and co-founder of

The MathWorks.

His e-mail address is

m o l e r @ m a t h w o r k s . c o m .

